Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High tech tools, top-notch science and serendipity play part in finding 23-mile long plume off Florida’s Treasure Coast

14.06.2010
A team of dedicated South Florida researchers from the University of Miami’s Cooperative Institute for Marine and Atmospheric Studies (CIMAS) and the National Oceanic and Atmospheric Administration’s Atlantic Oceanographic and Meteorological Laboratory (NOAA/AOML) returning from the Gulf were determined to check on whether oil was, as predicted, being pulled into the Loop Current and carried toward the Dry Tortugas.

The University of Miami’s 96-foot catamaran the RV/F.G. Walton Smith had just completed a two-week National Science Foundation (NSF) sponsored cruise sampling the deep submerged plumes near the Deepwater Horizon well site. NOAA/AOML offered to pay for a few additional days, but the ship which is part of the University National Laboratory System, had to return to Miami on its tight schedule. The best they could do was extend the trip home by 18 hours.

Using funding provided through CIMAS, a team was rapidly assembled that included UM and CIMAS oceanographers Tom Lee and Nelson Melo, as well as a group of scientists led by Michelle Wood, director of the NOAA/AOML’s Ocean Chemistry Division. A sampling plan was pulled together using particle trajectories calculated by the UM Rosenstiel School of Marine & Atmospheric Science’s Coastal Shelf Modeling Group, in combination with information provided by Roffer’s Ocean Fishing Forecast Service (ROFFS) and remotely sensed images from UM’s Center for Southeastern Tropical Advanced Remote Sensing (CSTARS). Using these sophisticated tools, the team decided that the most likely pathway for oil to reach the Florida Keys was for it to be pulled into a counterclockwise rotating frontal eddy in the northeast corner of the Loop Current, and then south along the eastern frontal zone of the Loop Current to the Dry Tortugas.

They set out, borrowing surveying equipment from NSF scientists who were leaving the ship, including geological oceanographer Vernon Asper of the University of Southern Mississippi and Samantha Joye from the University of Georgia. As they traveled into the eddy field they saw areas of sheen, but no tar balls.

Changing course to the south, however they found an area of strong flow convergence within a southward flowing jet that resulted from flow being pulled into the eddy. Knowing that this was just the type of oceanographic feature that would concentrate any floating material, including oil, they followed it. At about the same time a U.S. Coast Guard flight that had been sent to visually survey the area spotted what they thought could be an oil slick in the area and contacted the scientists aboard the Walton Smith to have the ship get a closer look at the slick.

“As we approached, we found an extensive oil slick that stretched about 20 nm (20 miles) along the southward flowing jet which merged with the northern front of the Loop Current. The slick was made up of tar balls shaped like pancakes that went from the size of a dime to about 6 inches in diameter,” said Tom Lee, UM Research Professor Emeritus and CIMAS scientist. “The combination of models and satellite images, along with our shipboard observations and ROFFS daily analysis had helped us to identify and study this previously unidentified oil plume located off Florida’s southwest coast and heading toward the Tortugas.”

Scientists quickly set up net tows and lowered a CTD (Conductivity, Temperature and Depth) instrument equipped with oil sampling devices into the water, collecting samples of both the oil and saltwater in the area. As they headed further south they kept looking for other tendrils oil, but increased winds made spotting tell-tale sheen more difficult. As a result they could not confirm the exact length of this southern arm of the oil slick, which they had previously inferred from their data. Samples have been provided to federally sanctioned laboratories to confirm the source of materials gathered.

“The good news is that the various approaches we are using to project its pathway seem to be yielding similar answers and guiding us properly. We need to maintain our vigilance and expand our efforts to determine the degree of risk to unique downstream resources like the Dry Tortugas and Florida Keys National Marine Sanctuary, which are vital natural environments that we need to protect,” said Peter Ortner, UM Marine Biology and Fisheries professor and director of CIMAS. “NOAA Cooperative Institutes, like CIMAS, continue to stand ready to assist their federal partners with the best available science to ensure that response and restoration resources are deployed as proactively and responsibly as possible during this national emergency.”

Earlier this month the National Oceanic and Atmospheric Administration (NOAA) announced its selection of UM to continue to lead its CIMAS partnership, which has been in place since 1977 to improve our understanding of climate, hurricanes, and marine ecosystems along the southeastern U.S. coast. The renewed partnership allows investigators from UM and partner institutions to receive NOAA, as well as other federal agency support for research projects, and facilitates collaboration with NOAA scientists at NOAA/AOML, National Hurricane Center, Southeast Fisheries Science Center, as well as other NOAA facilities and 18 Cooperative Institutes nationwide.

About the University of Miami

The University of Miami’s mission is to educate and nurture students, to create knowledge, and to provide service to our community and beyond. Committed to excellence and proud of the diversity of our University family, we strive to develop future leaders of our nation and the world. For more information, please visit www.rsmas.miami.edu/oil-spill

Barbra Gonzalez | University of Miami
Further information:
http://www.rsmas.miami.edu
http://www.rsmas.miami.edu/oil-spill

More articles from Ecology, The Environment and Conservation:

nachricht Plant seeds survive machine washing - Dispersal of invasive plants with clothes
11.09.2018 | Gesellschaft für Ökologie e.V.

nachricht Air pollution leads to cardiovascular diseases
21.08.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

 
Latest News

Matter falling into a black hole at 30 percent of the speed of light

24.09.2018 | Physics and Astronomy

NASA balloon mission captures electric blue clouds

24.09.2018 | Earth Sciences

New way to target advanced breast cancers

24.09.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>