Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The gut could reveal effect of climate change on fish

15.05.2012
As sea temperatures rise, stocks of some fish species can decline while others may grow, reveals new research from the University of Gothenburg looking at gastrointestinal function in fish.

The gastrointestinal system in fish is much more sensitive to temperature changes than previously believed and may even be a limiting factor for the distribution of species, a thesis from the University of Gothenburg shows.

By looking at how gut function in various fish species is affected by both rapid and slow changes in water temperature, we can better understand what will happen to different species when the climate changes.

“When the temperature of the water rises, the fish’s body temperature climbs, activity in the gut increases, and more energy is needed to stay healthy,” says researcher Albin Gräns,who has studied various species in both saltwater and freshwater environments in western Sweden, California and Greenland.

Ectothermic animals are victims of their environment
Almost all fish are ectothermic, which means that their body temperature is the same as that of their surroundings. When the temperature of the water changes, so does the temperature of the fish, which affects all their body functions.

“Since changes in body temperature affect virtually all of a fish’s organs, it’s surprising that we know so little about how temperature changes impact on their physiology,” says Gräns.

Winners and losers
Albin Gräns has studied sculpin, sturgeon and rainbow trout at various temperatures.

His research shows that some species may find it harder to absorb nutrients as water temperatures rise, while others could profit from the new climate.

“If the water temperature in the Arctic rises further, some sedentary species, such as various types of sculpin, will probably struggle to maintain blood flow in the gut during the summer months, which will affect their health,” he explains.

Other fish, such as those currently living at the lower extremes of their possible distribution, could instead benefit from a slightly higher temperature. The effects of a rise in water temperature will therefore vary between species, and many of the changes are difficult to predict.

“Our work is largely about trying to identify the physiological bottlenecks, in other words which parts of the body will fail first – whether the heart or the gut is the most sensitive part of the system.”

Exploiting temperature differences
Turning food into nutrition requires the gastrointestinal system to function properly. Fish turn out to have guts that are highly sensitive to changes in water temperature, and many temperature-regulating behaviours observed in fish can probably be due to that the fish attempts to maintain or maximise gastrointestinal function.

“By eating at one temperature and then swimming off to another temperature to digest the food, fish can exploit areas that might otherwise be harmful to them,” says Gräns.

The thesis has been successfully defended.

For more information, please contact: Albin Gräns
Telephone: +46 737 033500
E-mail: albin.grans@bioenv.gu.se

Helena Aaberg | idw
Further information:
http://www.gu.se
http://hdl.handle.net/2077/28573

More articles from Ecology, The Environment and Conservation:

nachricht Fungicides as an underestimated hazard for freshwater organisms
17.09.2019 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Study: We need more realistic experiments on the impact of climate change on ecosystems
16.09.2019 | Martin-Luther-Universität Halle-Wittenberg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Im Focus: Modular OLED light strips

At the International Symposium on Automotive Lighting 2019 (ISAL) in Darmstadt from September 23 to 25, 2019, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, a provider of research and development services in the field of organic electronics, will present OLED light strips of any length with additional functionalities for the first time at booth no. 37.

Almost everyone is familiar with light strips for interior design. LED strips are available by the metre in DIY stores around the corner and are just as often...

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

Im Focus: The working of a molecular string phone

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

This time-lapse sequence of structures reveals dynamic motions as a fundamental element in the molecular foundations of biology.

Im Focus: Milestones on the Way to the Nuclear Clock

Two research teams have succeeded simultaneously in measuring the long-sought Thorium nuclear transition, which enables extremely precise nuclear clocks. TU Wien (Vienna) is part of both teams.

If you want to build the most accurate clock in the world, you need something that "ticks" very fast and extremely precise. In an atomic clock, electrons are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

AI for Laser Technology Conference: optimizing the use of lasers with artificial intelligence

29.08.2019 | Event News

 
Latest News

Novel mechanism of electron scattering in graphene-like 2D materials

17.09.2019 | Materials Sciences

Novel anti-cancer nanomedicine for efficient chemotherapy

17.09.2019 | Health and Medicine

Fungicides as an underestimated hazard for freshwater organisms

17.09.2019 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>