Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Green Machine: Algae Clean Wastewater, Convert to Biodiesel

18.02.2011
RIT researchers take algae out of the lab

Let algae do the dirty work.

Researchers at Rochester Institute of Technology are developing biodiesel from microalgae grown in wastewater. The project is doubly “green” because algae consume nitrates and phosphates and reduce bacteria and toxins in the water. The end result: clean wastewater and stock for a promising biofuel.

The purified wastewater can be channeled back into receiving bodies of water at treatment plants, while the biodiesel can fuel buses, construction vehicles and farm equipment. Algae could replace diesel’s telltale black puffs of exhaust with cleaner emissions low in the sulfur and particulates that accompany fossil fuels.

Algae have a lot of advantages. They are cheaper and faster to grow than corn, which requires nutrient-rich soil, fertilizer and insecticide. Factor in the fuel used to harvest and transport corn and ethanol starts to look complicated.

In contrast, algae are much simpler organisms. They use photosynthesis to convert sunlight into energy. They need only water—ponds or tanks to grow in—sunlight and carbon dioxide.

“Algae—as a renewable feedstock—grow a lot quicker than crops of corn or soybeans,” says Eric Lannan, who is working on his master’s degree in mechanical engineering at RIT. “We can start a new batch of algae about every seven days. It’s a more continuous source that could offset 50 percent of our total gas use for equipment that uses diesel.”

Cold weather is an issue for biodiesel fuels.

“The one big drawback is that biodiesel does freeze at a higher temperature,” says Jeff Lodge, associate professor of biological sciences at RIT. “It doesn’t matter what kind of diesel fuel you have, if it gets too cold, the engine’s not starting. It gels up. It’s possible to blend various types of biodiesel—algae derived with soybeans or some other type—to generate a biodiesel with a more favorable pour point that flows easily.”

Lannan’s graduate research in biofuels led him to Lodge’s biology lab. With the help of chemistry major Emily Young, they isolated and extracted valuable fats, or lipids, algae produce and yielded tiny amounts of a golden-colored biodiesel. They are growing the alga strain Scenedesmus, a single-cell organism, using wastewater from the Frank E. Van Lare Wastewater Treatment Plant in Irondequoit, N.Y.

“It’s key to what we’re doing here,” Lodge says. “Algae will take out all the ammonia—99 percent—88 percent of the nitrate and 99 percent of the phosphate from the wastewater — all those nutrients you worry about dumping into the receiving water. In three to five days, pathogens are gone. We’ve got data to show that the coliform counts are dramatically reduced below the level that’s allowed to go out into Lake Ontario.”

Assemblyman Joseph Morelle, whose district includes Irondequoit, applauds RIT’s initiative. “Innovations developed at great academic institutions such as RIT will be key to solving many of the challenges we face, from revitalizing the upstate economy to the creation of clean, renewable energy sources for the future. Professor Lodge and Eric Lannan’s research bridges the gap between cost efficiency and environmental conservation and is a perfect example of how old problems can yield to new and creative solutions.”

Lodge and Lannan ramped up their algae production from 30 gallons of wastewater in a lab at RIT to 100 gallons in a 4-foot-by-7-foot long tank at Environmental Energy Technologies, an RIT spinoff. Lannan’s graduate thesis advisor Ali Ogut, professor of mechanical engineering, is the company’s president and CTO. In the spring, the researchers will build a mobile greenhouse at the Irondequoit wastewater treatment plant and scale up production to as much as 1,000 gallons of wastewater.

Northern Biodiesel, located in Wayne County, will purify the lipids from the algae and convert them into biodiesel for the RIT researchers.

Susan Gawlowicz | EurekAlert!
Further information:
http://www.rit.edu

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling of PET Bottles: New Ideas for Resource Cycles in Germany
25.06.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>