Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The good news about carbon storage in tropical vegetation

30.01.2012
New wall-to-wall carbon storage map can help developing nations track deforestation and report on emissions

A study published in Nature Climate Change today finds that tropical vegetation contains 21 percent more carbon than previous studies had suggested.

Using a combination of remote sensing and field data, scientists from Woods Hole Research Center (WHRC), Boston University, and the University of Maryland were able to produce the first "wall-to-wall" map (with a spatial resolution of 500 m x 500 m) of carbon storage of forests, shrublands, and savannas in the tropics of Africa, Asia, and South America.

Colors on the map represent the amount of carbon density stored in the vegetation in a continuum fashion (Figure 1). Reliable estimates of carbon storage are critical to understanding the amount of carbon released into the atmosphere by changes in land cover and land use.

Tropical deforestation is considered a major source of the greenhouse gases that cause climate change, releasing as much as 1.1 billion tons of carbon into the atmosphere each year. Based on new data in this study, researchers believe that current models may overestimate the net flux of carbon into the atmosphere due to tropical vegetation loss by 11 to 12 percent. For countries trying to meet their greenhouse gases reporting requirements under the United Nations Framework Convention on Climate Change (UNFCCC), these new data are particularly important.

Lead author Alessandro Baccini, an assistant scientist at WHRC, explained that the new data set provides a spatially and temporally consistent estimate of carbon stock and a stronger foundation for estimating carbon emissions by better characterizing the carbon density of the forest that has been lost. "For the first time we were able to derive accurate estimates of carbon densities using satellite LiDAR observations in places that have never been measured," said Baccini. "This is like having a consistent, very dense pantropical forest inventory."

In many developing nations, deforestation is the largest source of emissions of greenhouse gases. In order to reliably report emissions to the UNFCCC, and to participate in international schemes such as Reducing Emissions from Deforestation and Forest Degradation (REDD+), which provides compensation for avoiding deforestation, these countries need an accurate way to calculate stored carbon and to track deforestation and reforestation. "We worked closely with collaborators in 12 countries around the tropics to collect the field data needed to calibrate the satellite measurements and ensure relevance for their national reporting," said co-author Nadine Laporte, a WHRC associate scientist, who coordinated field measurements in Africa.

"The paper is important for two reasons," said co-author and WHRC senior scientist Richard A. Houghton. "First, it provides a high-resolution map of aboveground biomass density for the world's tropical forests. Previous maps were of much coarser resolution and yielded wildly different estimates of both regional totals and spatial distribution. Second, the paper calculates a new estimate of carbon emissions from land-use change in the tropics."

This was done using the co-location of biomass density and deforestation to assign a more representative carbon density to the forests cleared. Previous estimates used 'average' biomass densities that may have biased emissions' estimates. In short, the approach will lead to better tracking of changes in biomass density resulting from degradation and growth.

This will in turn help nations, projects, and groups of all kinds determine better estimates of carbon emissions. These estimates are required nationally for UNFCCC reporting and would support REDD+ should it be implemented. "The study represents a major step forward in the effort to map the current state of global tropical biomass stocks," commented Greg Asner, an ecologist at the Carnegie Institution for Science. "The 500m resolution of the map will help countries implement activities to improve forest management and to help fight climate change through reduced carbon emissions from deforestation."

The scientists estimated that tropical forests in America store around 118 billion tons of carbon, a fifth more than indicated by previous findings. For the first time in a large-area mapping effort of this kind, an end-to-end approach was constructed quite literally from the ground up, beginning with a pantropical field campaign, relying on the work of scholars in many different countries, and designed for the optimal integration of field and satellite data. The result is a carbon density map for the tropics with a level of consistency and accuracy never before achieved

Global measurements of where carbon is accumulating and where it's being lost will be used to better quantify how many carbon credits would be needed to reduce carbon emission under the UNFCCC and, when carbon is valued, to quantify financial rewards. As Richard A. Houghton said, "Your forest may be worth more if it's accumulating more carbon than another forest."

"Coupling the Lidar and field measurements is what makes this study and our map so unique, and powerful" notes study co-author and WHRC senior scientist Scott Goetz. "Without measurements from a satellite-based Lidar, a study of this nature would not have been possible. We need that capability going forward."

The study used field measurements collected across the tropics to calibrate light detection and ranging (LiDAR) satellites models and Moderate Resolution Imaging Spectoradiometer (MODIS) on NASA's Aqua and Terra to map the carbon densities in the tropics. The carbon density data set is available for download at http://www.whrc.org/mapping/pantropical/carbon_dataset.html. Satellite processing algorithms and data are available at http://earthengine.google.org/#state=search&q=tag:mcd43a4

For more information, please contact: Ian Vorster, Associate Director of Communications

Woods Hole Research Center ivorster@whrc.org / 508-444-1509

Ian Vorster | EurekAlert!
Further information:
http://www.whrc.org

More articles from Ecology, The Environment and Conservation:

nachricht Five-point plan to integrate recreational fishers into fisheries and nature conservation policy
20.03.2019 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Rain is important for how carbon dioxide affects grasslands
06.03.2019 | University of Gothenburg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Molecular motors run in unison in a metal-organic framework

20.03.2019 | Life Sciences

Active substance from plant slows down aggressive eye cancer

20.03.2019 | Life Sciences

Novel sensor system improves reliability of high-temperature humidity measurements

20.03.2019 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>