Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Global warming may delay recovery of stratospheric ozone

05.02.2009
Increasing greenhouse gases could delay, or even postpone indefinitely the recovery of stratospheric ozone in some regions of the Earth, a new study suggests. This change might take a toll on public health.

Darryn W. Waugh, an atmospheric scientist at Johns Hopkins University in Baltimore, and his colleagues report that climate change could provoke variations in the circulation of air in the lower stratosphere in tropical and southern mid-latitudes - a band of the Earth including Australia and Brazil.

The circulation changes would cause ozone levels in these areas never to return to levels that were present before decline began, even after ozone-depleting substances have been wiped out from the atmosphere.

"Global warming causes changes in the speed that the air is transported into and through the lower stratosphere [in tropical and southern mid-latitudes]," says Waugh. "You're moving the air through it quicker, so less ozone gets formed." He and his team present their findings in the Feb. 5 Geophysical Research Letters, a publication of the American Geophysical Union (AGU).

Dan Lubin, an atmospheric scientist who has studied the relationship between ozone depletion and variations in the ultraviolet radiation that reaches the Earth, says Waugh's findings could bode ill for people living in the tropics and southern mid-latitudes.

If ozone levels never return to pre-1960 levels in those regions, "the risk of skin cancer for fair- skinned populations living in countries like Australia and New Zealand, and probably in Chile and Argentina too, will be greater in the 21st century than it was during the 20th century," says Lubin, who is at Scripps Institution of Oceanography in La Jolla, Calif. and did not participate in the research.

Ozone is a gas which is naturally present in the atmosphere and absorbs ultraviolet radiation from the Sun that can harm living beings-for instance, by causing human skin cancer. This protective molecule has been in decline in the stratosphere since the 1970s due to an increase in atmospheric concentrations of human-made substances (mostly chlorofluorocarbon and bromofluorocarbon

compounds) that destroy ozone. Since the late 1980s, most countries have adhered to the Montreal Protocol, an international treaty to phase out production of ozone-depleting substances.

Researchers at NASA Goddard Space Flight Center in Greenbelt, Md. collaborated with Waugh in the new study. The team forecast effects on ozone recovery by means of simulations using a computer model known as the Goddard Earth Observing System Chemistry-Climate Model.

Not all regions face worse prospects for ozone recovery as a result of climate change, the scientists find.

In polar regions and northern mid-latitudes, restoration of ozone in the lower stratosphere will suffer little impact from increasing greenhouse gases, their projections indicate. Indeed, in the upper stratosphere, climate change causes a drop in temperatures that slows down some of the chemical reactions that destroy ozone. So, recovery might be reached in those parts of the atmosphere earlier than forecast, even decades before the removal of ozone-depleting gases.

While scientists have long suspected that climate change might be altering the dynamics of stratospheric ozone recovery, Waugh's team is the first to estimate the effects of increasing greenhouse gases on the recovery of ozone by region.

Waugh says his study will help scientists attribute ozone variations to the right agent.

"Ozone is going to change in response to both ozone-depleting substances and greenhouse gases," he says, "If you don't consider climate change when studying the ozone recovery data, you may get pretty confused."

Title:
"Impacts of climate change on stratospheric ozone recovery"
Authors:
Darryn W. Waugh: Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, Maryland, USA.
Luke Oman: Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, Maryland, USA.
S. Randy Kawa: Atmospheric Chemistry and Dynamics Branch, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA.
Richard. S. Stolarski: Atmospheric Chemistry and Dynamics Branch, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA.
Steven Pawson: Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA.
Anne R. Douglass: Atmospheric Chemistry and Dynamics Branch, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA.
Paul A. Newman: Atmospheric Chemistry and Dynamics Branch, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA.
J. Eric Nielsen: Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA.

Citation:
Waugh, D. W., L. Oman, S. R., Kawa, R. S. Stolarski, S. Pawson, A. R. Douglass, P. A.

Newman, and J. E. Nielsen (2009), Impacts of climate change on stratospheric ozone recovery, Geophys. Res. Lett., 36, L03805, doi:10.1029/2008GL036223.

Contact information for author:
Darryn W. Waugh: +1 (410) 516-8344, waugh@jhu.edu

Maria-Jose Vinas | American Geophysical Union
Further information:
http://www.agu.org

More articles from Ecology, The Environment and Conservation:

nachricht Waste in the water – New purification techniques for healthier aquatic ecosystems
24.07.2018 | Eberhard Karls Universität Tübingen

nachricht Plenty of habitat for bears in Europe
24.07.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>