Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gates Foundation funds novel Third World sanitation proposal

08.11.2011
For less than $100 and a day's work, a single family in an undeveloped country can construct a solid waste disposal system that not only processes the waste, but requires no electricity or additional energy while destroying harmful pathogens.

So argues a Duke University environmental engineer who envisions a simple system that can be constructed from everyday items designed specifically for Third World countries, where the disposal of solid human waste and the corresponding spread of disease is a leading health concern.

Marc Deshusses, professor of civil and environmental engineering at Duke's Pratt School of Engineering, has plans to develop a novel sewage digestion system with capture of the methane gas produced during the breakdown of the waste to produce enough heat to kill the bacteria and viruses most commonly associated with human waste.

The Bill and Melinda Gates Foundation, an organization that works to help all people lead healthy and productive lives, believes that Deshusses's idea has promise. The foundation's Grand Challenges Explorations program granted Deshusses $100,000 to move his ideas from the laboratory to field-testing in 18 months. The program awarded 110 such grants today.

"People in countries that lack proper sanitation for their sewage desperately need a disposal method that is cheap, simple to implement and maintain, and reliable," Deshusses said. "We believe the proposed system could represent a major advance in environmental and health protection for developing countries."

In the system Deshusses designed, the waste would be directed to a chamber, likely constructed of PVC pipe. Once sealed in the chamber to create an oxygen-free, or anaerobic, environment, bacteria digests the waste. As a byproduct of this digestion, methane gas is produced.

"The system works much like septic tanks used in many rural communities," Deshusses said. "However, in septic tanks, the methane produced is released into the environment, which a lost opportunity as well as an environmental liability. As a greenhouse gas, methane is 25 times more potent than carbon dioxide."

Instead of letting the methane escape into the environment, the new approach captures it and burns it, creating enough heat to kill pathogens in the effluent. Deshusses added that additional organic materials, like leftover food scraps or animal waste, might need to be added along with the human waste to boost the amount of organic matter and increase the methane produced by the anaerobic microbes.

Deshusses said he and a team of Duke researchers will spend the early phase of the grant period perfecting and testing the system in the laboratory before producing a prototype.

"The ultimate goal is to build a device which we will take to Las Mercedes, Honduras, where it will be tested during an eight-week civic engagement project in which Duke students work with local organizations," Deshusses said. The program is the national Engineers Without Borders (EWB) effort, of which the Duke chapter has active projects throughout the Third World.

If the field-testing proves successful, Deshusses anticipates testing the device in up to five additional countries to be identified with the assistance of the Gates Foundation.

The program funding Deshusses's idea is a $100 million initiative launched in 2008. To date, it has funded nearly 500 researchers from over 40 countries. Initial grants of $100,000 are awarded twice a year. Successful projects have an opportunity to receive a follow-on grant of up to $1 million.

"We believe in the power of innovation -- that a single bold idea can pioneer solutions to our greatest health and development challenges," said Chris Wilson, Director of Global Health Discovery for the Gates Foundation. "Grand Challenges Explorations seeks to identify and fund these new ideas wherever they come from, allowing scientists, innovators and entrepreneurs to pursue the kinds of creative ideas and novel approaches that could help to accelerate the end of polio, cure HIV infection or improve sanitation."

Richard Merritt | EurekAlert!
Further information:
http://www.duke.edu

More articles from Ecology, The Environment and Conservation:

nachricht Waste in the water – New purification techniques for healthier aquatic ecosystems
24.07.2018 | Eberhard Karls Universität Tübingen

nachricht Plenty of habitat for bears in Europe
24.07.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>