Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fungi-filled forests are critical for endangered orchids

25.01.2012
Older forests with just the right fungi may be secret to saving vulnerable plants

When it comes to conserving the world's orchids, not all forests are equal. In a paper to be published Jan. 25 in the journal Molecular Ecology, Smithsonian ecologists revealed that an orchid's fate hinges on two factors: a forest's age and its fungi.

Roughly 10 percent of all plant species are orchids, making them the largest plant family on Earth. But habitat loss has rendered many threatened or endangered. This is partly due to their intimate relationship with the soil.

Orchids depend entirely on microscopic fungi in the early stages of their lives. Without the nutrients orchids obtain by digesting these host fungi, their seeds often will not germinate and baby orchids will not grow. While researchers have known about the orchid–fungus relationship for years, very little is known about what the fungi need to survive.

Biologists based at the Smithsonian Environmental Research Center launched the first study to find out what helps the fungi flourish and what that means for orchids. Led by Melissa McCormick, the researchers looked at three orchid species, all endangered in one or more U.S. states.

After planting orchid seeds in dozens of experimental plots, they also added particular host fungi needed by each orchid to half the plots. Then they followed the fate of the orchids and fungi in six study sites: three in younger forests (50 to 70 years old) and three in older forests (120 to 150 years old).

After four years they discovered orchid seeds germinated only where the fungi they needed were abundant—not merely present.

In the case of one species, Liparis liliifolia (lily-leaved twayblade), seeds germinated only in plots where the team had added fungi. This suggests that this particular orchid could survive in many places, but the fungi they need do not exist in most areas of the forest.

Meanwhile, the fungi displayed a strong preference for older forests.

Soil samples taken from older forest plots had host fungi that were five to 12 times more abundant compared to younger forests, even where the research team had not added them. They were more diverse as well. More mature plots averaged 3.6 different Tulasnella fungi species per soil sample (a group of fungi beneficial to these orchids), while the younger ones averaged only 1.3.

Host fungi were also more abundant in plots where rotting wood was added. These host fungi, which are primarily decomposers, may grow better in places where decomposing wood or leaves are plentiful.

All this implies that to save endangered orchids, planting new forests may not be enough. If the forests are not old enough or do not have enough of the right fungi, lost orchids may take decades to return, if they return at all.

"This study, for the first time, ties orchid performance firmly to the abundance of their fungi," McCormick said. "It reveals the way to determine what conditions host fungi need, so we can support recovery of the fungi needed by threatened and endangered orchids."

The University of Alaska Fairbanks and Purdue University also contributed to this study. The abstract will be available here: http://onlinelibrary.wiley.com/doi/10.1111/j.1365-294X.2012.05468.x/abstract

Kristen Minogue | EurekAlert!
Further information:
http://www.si.edu
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-294X.2012.05468.x/abstract

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling of PET Bottles: New Ideas for Resource Cycles in Germany
25.06.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>