Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First Forecast Calls for Mild Amazon Fire Season in 2012

11.05.2012
Forests in the Amazon Basin are expected to be less vulnerable to wildfires this year, according to the first forecast from a new fire severity model developed by university and NASA researchers.

Fire season across most of the Amazon rain forest typically begins in May, peaks in September and ends in January. The new model, which forecasts the fire season’s severity from three to nine months in advance, calls for an average or below-average fire season this year within 10 regions spanning three countries: Bolivia, Brazil and Peru.

“Tests of the model suggested that predictions should be possible before fire activity begins in earnest,” said Doug Morton, a co-investigator on the project at NASA’s Goddard Space Flight Center in Greenbelt, Md. “This is the first year to stand behind the model and make an experimental forecast, taking a step from the scientific arena to share this information with forest managers, policy makers, and the public alike.”

The model was first described last year in the journal Science. Comparing nine years of fire data from NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra satellite, with a record of sea surface temperatures from NOAA, scientists established a connection between sea surface temperatures in the Pacific and Atlantic oceans and fire activity in South America.

“There will be fires in the Amazon Basin, but our model predictions suggest that they won’t be as likely in 2012 as in some previous years,” said Jim Randerson of the University of California, Irvine, and principal investigator on the research project.

Specifically, sea surface temperatures in the Central Pacific and North Atlantic are currently cooler than normal. Cool sea surface temperatures change patterns of atmospheric circulation and increase rainfall across the southern Amazon in the months leading up to the fire season.

“We believe the precipitation pattern during the end of the wet season is very important because this is when soils are replenished with water,” said Yang Chen of UC Irvine. “If sea surface temperatures are higher, there is reduced precipitation across most of the region, leaving soils with less water to start the dry season.”

Without sufficient water to be transported from the soil to the atmosphere by trees, humidity decreases and vegetation is more likely to burn. Such was the case in 2010, when above-average sea surface temperatures and drought led to a severe fire season. In 2011, conditions shifted and cooler sea surface temperatures and sufficient rainfall resulted in fewer fires, similar to the forecast for 2012.

Building on previous research, the researchers said there is potential to adapt and apply the model to other locations where large-scale climate conditions are a good indicator of the impending fire season, such as Indonesia and the United States.

Amazon forests, however, are particularly relevant because of their high biodiversity and vulnerability to fires. Amazon forests also store large amounts of carbon, and deforestation and wildfires release that carbon back to the atmosphere. Predictions of fire season severity may aid initiatives – such as the United Nation’s Reducing Emissions from Deforestation and forest Degradation program – to reduce the emissions of greenhouse gases from fires in tropical forests.

“The hope is that our experimental fire forecasting information will be useful to a broad range of communities to better understand the science, how these forests burn, and what predisposes forests to burning in some years and not others,” Morton said. “We now have the capability to make predictions, and the interest to share this information with groups who can factor it into their preparation for high fire seasons and management of the associated risks to forests and human health.”

To see the 2012 prediction and UC Irvine disclaimer clause, visit:
https://webfiles.uci.edu/ychen17/data/SAMFSS.html
Related story, "Ocean Temperatures Can Predict Amazon Fire Season Severity":
http://www.nasa.gov/mission_pages/fires/main/amazon-fire-season.html
Kathryn Hansen
NASA's Goddard Space Flight Center, Greenbelt, Md.
301-286-1046
kathryn.h.hansen@gmail.com
Janet Wilson
University of California, Irvine
949-824-3969
janethw@uci.edu

Kathryn Hansen | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/mission_pages/fires/main/mild-amazon.html

More articles from Ecology, The Environment and Conservation:

nachricht Emissions from road construction could be halved using today’s technology
18.05.2020 | Schwedischer Forschungsrat - The Swedish Research Council

nachricht When every particle counts: IOW develops comprehensive guidelines for microplastic extraction from environmental samples
11.05.2020 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

New 5G switch provides 50 times more energy efficiency than currently exists

27.05.2020 | Information Technology

Return of the Blob: Surprise link found to edge turbulence in fusion plasma

27.05.2020 | Physics and Astronomy

Upwards with the “bubble shuttle”: How sea floor microbes get involved with methane reduction in the water column

27.05.2020 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>