Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fishy behaviour

05.10.2011
A fish’s personality may determine how it is captured. This association between personality difference and capture-technique could have significant evolutionary and ecological consequences for affected fish populations, as well as for the quality of fisheries.

Anglers fishing near rocky outcrops or in areas of water with submerged vegetation may be more likely to catch timid fish, while those fishing in open water may be more likely to reel in bolder fish, according to new research conducted at Queen’s University Biological Station.

“Boldness—the tendency of an individual to take risks—is one personality trait of considerable interest to behavioural biologists,” explains lead author Alexander Wilson, a visiting biologist from Carleton University. “Ours is the first study to have characterized a relationship between capture technique and individual boldness in a wild population of fish.”

The researchers examined the personalities of bluegill sunfish caught by two different capture techniques – angling (a hook attached to a fishing line) and beach seining (a long net that is dragged through water to encircle fish).

Fish caught in the wild by angling were more timid than fish captured in the wild using a seine net. However, when a group of fish captured by seine net was then released in a large outdoor pool and angled for, it was the bold individuals who were most often caught in the open.

According to Dr. Wilson, these findings make ecological sense. Despite spending equal times angling in open water areas and in areas with refuge, the researcher caught more fish in the areas with refuge—a habitat that appeals more to timid fish. On the other hand, beach seining or angling in open water are both capture techniques that are more likely to target bolder, risk-taking fish.

This research was recently published in the Canadian Journal of Fisheries and Aquatic Science.

For more information about the Queen’s University Biological Station, visit the website.

Christina Archibald | EurekAlert!
Further information:
http://www.queensu.ca
http://www.queensu.ca/news/articles/fishy-behaviour

More articles from Ecology, The Environment and Conservation:

nachricht 5000 tons of plastic released into the environment every year
12.07.2019 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Climate impact of clouds made from airplane contrails may triple by 2050
27.06.2019 | European Geosciences Union

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

Im Focus: Modelling leads to the optimum size for platinum fuel cell catalysts: Activity of fuel cell catalysts doubled

An interdisciplinary research team at the Technical University of Munich (TUM) has built platinum nanoparticles for catalysis in fuel cells: The new size-optimized catalysts are twice as good as the best process commercially available today.

Fuel cells may well replace batteries as the power source for electric cars. They consume hydrogen, a gas which could be produced for example using surplus...

Im Focus: The secret of mushroom colors

Mushrooms: Darker fruiting bodies in cold climates

The fly agaric with its red hat is perhaps the most evocative of the diverse and variously colored mushroom species. Hitherto, the purpose of these colors was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Tracking down climate change with radar eyes

17.07.2019 | Earth Sciences

Researchers build transistor-like gate for quantum information processing -- with qudits

17.07.2019 | Information Technology

A new material for the battery of the future, made in UCLouvain

17.07.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>