Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fish, Lettuce and Food Waste Put New Spin on Aquaponics

07.07.2011
A graduate student at the SUNY College of Environmental Science and Forestry (ESF) is conducting a first-of-its kind experiment in urban food production, using dried food waste to raise fish and using the fish waste to nourish an ever-growing crop of Boston Bibb lettuce.

“The idea is that you’re taking post-consumer food waste which, right now at best, you can compost,” said Michael Amadori, a master’s student in ecological engineering. “And you are growing fish, then you’re taking fish waste and you’re growing lettuce. You can bypass the composting process completely.

“The whole idea with aquaponics is sustainability,” he said. “You can grow fresh food in non-traditional areas, such as college campuses and the urban environment.”

Aquaponics — a practice that combines traditional aquaculture (the raising of fish) with hydroponics (growing vegetables without soil) — is not a new endeavor. But Amadori said this is the first time anyone has experimented with using post-consumer food waste to feed the fish.

If he’s successful, he will have found a way to reduce the amount of food that enters the waste stream while also devising a way to significantly lower the cost of growing fish commercially.

“Not only is Michael investigating the nutrient and energy flows in this system, he is designing a system that can be scaled up for use in small communities that have suffered economic hardship from the loss of manufacturing jobs, such as paper mill closures in the northeastern United States,” said Douglas J. Daley, director of the ESF-based SUNY Center for Brownfield Studies and Amadori’s major professor.

Amadori’s experiment is set up in a greenhouse on the ESF campus in Syracuse, N.Y. Six 55-gallon plastic barrels serve as tanks that each hold 20 young tilapia. In the early weeks of Amadori’s work, the 120 fish together weighed less than a pound. When his experiment is complete in approximately a year, he expects them to attain commercial weight of one pound each. The food waste is obtained from the dining center at Sadler Hall, a residence hall at neighboring Syracuse University.

“It’s what’s left on people’s plates,” he said. “Or it’s left on the grill at the end of the day.”

He puts the food waste through a food grinder, dries it in an oven and breaks it into tiny pellets.

Fish in three of the tanks are fed the homemade pellets. The fish in the other three barrels eat commercial fish food so Amadori can compare the differences between the two populations.

Temperature-controlled water from the fish tanks is pumped into plastic containers in which rows of Boston Bibb lettuce grow in beds of gravel. There is no soil. The lettuce absorbs the nutrients from the fish waste and the water is cycled back into the tanks. The process continues around the clock.

Amadori said he is using tilapia because they are hardy enough to withstand changes in pH and temperature and because the mild-tasting fish have emerged as a popular menu item in the last few years. He said the tilapia grown at fish farms is typically fed with fish that are harvested in the ocean and processed into commercial fish food. “It’s extremely unsustainable,” he said.

“We can close the loop with this process,” Amadori said. “One thing we have plenty of in an urban environment is food waste.”

Claire B. Dunn | Newswise Science News
Further information:
http://www.esf.edu

More articles from Ecology, The Environment and Conservation:

nachricht Waste in the water – New purification techniques for healthier aquatic ecosystems
24.07.2018 | Eberhard Karls Universität Tübingen

nachricht Plenty of habitat for bears in Europe
24.07.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>