Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fish larvae find the reef by orienting: The earlier the better

24.04.2012
Team of female scientists develop sophisticated numerical model to study larval behavior, fill ecological gap

The behavior of marine larvae is central to fully understanding and modeling the pelagic (open ocean) stage for many coastal organisms. For the first time, a numerical study conducted by the University of Miami (UM) incorporates horizontal larval fish navigation skills into realistic 3D flow fields, creating a powerful tool that spells out how larvae use environmental cues to find their way back to the reef after being out on the open ocean. The new model uses reliable larval swimming speeds and vertical migration, known life history traits and spawning time to create realistic scenarios that can be studied in detail.


This image shows damselfish larvae (Chromis atripectoralis) swimming freely in the open ocean, all in the same direction. In an article entitled: “Orientation behavior in fish larvae: A missing piece to Hjort's critical period hypothesis” that appears in the latest edition of the Journal of Theoretical Biology, scientists Erica Staaterman, Claire Paris and Judith Helgers demonstrate that despite very low swimming speeds -- about a few centimeters per second -- orientation behavior during early stages is critical to bringing larvae back to their juvenile habitat. In other words, baby reef-fish must possess, as early as possible, the ability to sense cues from the habitat that help them to navigate and survive their phase out in the open ocean. Credit: Ricardo Paris

In an article entitled: "Orientation behavior in fish larvae: A missing piece to Hjort's critical period hypothesis" that appears in the latest edition of the Journal of Theoretical Biology, scientists Erica Staaterman, Claire Paris* and Judith Helgers demonstrate that despite very low swimming speeds -- approximately a few centimeters per second -- orientation behavior during early stages is critical to bringing larvae back to the juvenile habitat. The research team shows that baby reef-fish must possess, as early as possible, the ability to sense cues radiating from the habitat that help them to navigate and survive the pelagic phase.

The team used Hjort's "critical period" hypothesis, which says that fish recruitment variability is driven by the fate of the earliest larval stages, and that food and "aberrant drift" are the main factors contributing to the survivorship during this early phase. According to this hypothesis, the proportion of survivors during this "critical" larval phase is carried over throughout the entire life history of the fish's population.

"Orientation during the "critical period" appears to have remarkable demographic consequences," said UM Applied Marine Physics Professor Paris. "Larvae need to orient themselves soon after hatching to increase their chance to find any reef or to come back to their home reef. This notion of 'larval homing behavior' is a new concept, but it makes sense when compared to other essential larval developmental traits such as first feeding and swimming. If early fish larvae can sense their way home, we were certainly missing an important component in current bio-physical models that would change predictions of marine population connectivity."

"Using this model we can add to Hjorts' hypothesis that 'behavior' is a main factor contributing to the survivorship of the larvae, as well," said Staaterman, a Ph.D. student at UM. "We have discovered that recruitment of reef-fish is linked to signals perceived by the pelagic larvae; if the signals disappear or weaken, larvae can get lost. Therefore, the health of the coral reef and its cues is not only critical to the adult reef-fishes, but it is also essential to the survivorship of their pelagic larvae."

This study also shows the importance of the health of the habitat, even in complex coastal circulation with eddies and counter-currents: The stronger the cue information radiating from the surrounding habitat, the higher the survival rate of the larvae.

The flexible numerical tool that was developed through this study will allow scientists to set up hypotheses about both the nature of the cues and the larval behavior of a wide variety of marine species. This knowledge will allow us to better understand the enigmatic ecological "black box" of the pelagic larval phase, and help communities to better manage marine resources.

"These kind of studies, where the paths of millions of fish larvae are simulated in a model ocean, are really only feasible with the newest generation of numerical models," said Helgers, a computer scientist who contributed to the model algorithm which is designed to answer questions on the interaction of larvae with ocean currents. "The model we have built is fast and reliable, which allows us to perform the complex computations required to track the larvae in a high resolution model ocean."

"The outcomes of this study should serve to re-focus research on basic understanding of what larvae are capable of sensing, how they use their capabilities in the pelagic environment, and finally on the sequential importance of navigational cues needed for survival," added Paris.

About the University of Miami's Rosenstiel School

The University of Miami's mission is to educate and nurture students, to create knowledge, and to provide service to our community and beyond. Committed to excellence and proud of the diversity of our University family, we strive to develop future leaders of our nation and the world. Founded in the 1940's, the Rosenstiel School of Marine & Atmospheric Science has grown into one of the world's premier marine and atmospheric research institutions. Offering dynamic interdisciplinary academics, the Rosenstiel School is dedicated to helping communities to better understand the planet, participating in the establishment of environmental policies, and aiding in the improvement of society and quality of life. For more information, please visit www.rsmas.miami.edu.

Barbra Gonzalez | EurekAlert!
Further information:
http://www.rsmas.miami.edu

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling of PET Bottles: New Ideas for Resource Cycles in Germany
25.06.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>