Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Finding plastic litter from afar

19.11.2018

Researchers from Oldenburg support project Ocean Cleanup

Ghost nets and other plastic garbage drifting in the sea could soon be detected automatically by planes, drones or satellites. The basis for this has been laid by a team including Dr. Shungudzemwoyo Garaba of the Institute for Chemistry and Biology of the Marine Environment (ICBM) at Oldenburg University.


A plastic bottle with bite marks in the Great Pacific Garbage Patch.

Photo: Kyler Badten/The Ocean Cleanup


In 2016, The Ocean Cleanup conducted a series of reconnaissance flights across the Great Pacific Garbage Patch.

Photo: The Ocean Cleanup

Plastic in the sea can be identified by its characteristic features of reflected infrared radiation, Garaba and his colleagues report in the journal Environmental Science & Technology. “We know more or less where it is, but the stuff is always moving,” he says.

Remote sensing could be useful for clean-up campaigns and for determining the amount and distribution of plastic pollution.

Garaba and his colleagues analysed data and photographs taken during a research campaign of the organization “The Ocean Cleanup”. This project, founded in 2013 by the Dutch inventor Boyan Slat, develops technologies to rid the world's oceans of plastic.

In 2016, the organization conducted an aerial expedition in order to quantify a large accumulation of litter between California and Hawaii known as the Great Pacific Garbage Patch. The results of this campaign were published in March 2018 in the journal Scientific Reports.

The research plane, a Lockheed C-130 Hercules, flew 400 metres above the sea. The Aerial Expedition used a combination of experienced human observers and advanced sensors to count the debris, including an advanced infrared sensor able to separate different colours of the infrared spectrum.

In the first instance, the team determined size, position, color and type of different plastic particles, without using the infrared data. The analysis showed that Aerial photography in the visible range was extremely helpful to detect large marine debris like ghost nets or crates.

“However, it is sometimes challenging to differentiate these from algae, wood fragments, sun-glints or wind chops”, says Garaba, who is currently senior researcher in the group Marine Sensor Systems headed by ICBM director Prof. Dr. Oliver Zielinski.

Green plastic items are easily mistaken for algae, white debris can be mixed up with sea spray or light reflections, explains Zielinski, who also contributed to the study.

However, infrared light reflected by plastic floating at the sea surface has distinct characteristics, Garaba and his colleagues report in their study. The researchers looked at these light characteristics reflected by 150 big plastic items such as ghost nets, ropes, crates or life belts.

They found out that marine garbage typically absorbs two bands of infrared light. These absorption features can be used to identify plastic. “We cannot only detect plastic in general but also distinguish different types”, Garaba says. Infrared signals are like a fingerprint which is unique for each material. “The recycling industry is using similar techniques in sorting plants”, Garaba explains, who also advises “The Ocean Cleanup” organization on questions of remote sensing.

According to Garaba, the new study offers the first proof of concept that remote sensing of ocean plastic in the infrared domain is feasible in the field. The results could be used to develop software for automatically identifying plastic garbage by remote sensing.

Wissenschaftliche Ansprechpartner:

Kontakt: Dr. Shungudzemwoyo Garaba, Tel.: 0441/798-8184, E-Mail: shungu.garaba@uol.de
Prof. Dr. Oliver Zielinski, Tel.: 0441/798-, E-Mail: oliver.zielinski@uol.de

Originalpublikation:

Shungudzemwoyo Garaba, Jen Aitken, Boyan Slat, Heidi M. Dierssen, Laurent Lebreton, Oliver Zielinski und Julia Reisser: „Sensing Ocean Plastics with an Airborne Hyperspectral Shortwave Infrared Imager“, Environ. Sci. Technol., 2018, 52 (20), pp 11699–11707, DOI: 10.1021/acs.est.8b02855

Weitere Informationen:

https://uol.de/icbm/marine-sensorsysteme/
https://pubs.acs.org/doi/10.1021/acs.est.8b02855

Dr. Corinna Dahm-Brey | idw - Informationsdienst Wissenschaft

More articles from Ecology, The Environment and Conservation:

nachricht Machine learning helps predict worldwide plant-conservation priorities
04.12.2018 | Ohio State University

nachricht From the Arctic to the tropics: researchers present a unique database on Earth’s vegetation
20.11.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

Inaugural "Virtual World Tour" scheduled for december

28.11.2018 | Event News

 
Latest News

A new molecular player involved in T cell activation

07.12.2018 | Life Sciences

High-temperature electronics? That's hot

07.12.2018 | Materials Sciences

Supercomputers without waste heat

07.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>