Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Finding plastic litter from afar

19.11.2018

Researchers from Oldenburg support project Ocean Cleanup

Ghost nets and other plastic garbage drifting in the sea could soon be detected automatically by planes, drones or satellites. The basis for this has been laid by a team including Dr. Shungudzemwoyo Garaba of the Institute for Chemistry and Biology of the Marine Environment (ICBM) at Oldenburg University.


A plastic bottle with bite marks in the Great Pacific Garbage Patch.

Photo: Kyler Badten/The Ocean Cleanup


In 2016, The Ocean Cleanup conducted a series of reconnaissance flights across the Great Pacific Garbage Patch.

Photo: The Ocean Cleanup

Plastic in the sea can be identified by its characteristic features of reflected infrared radiation, Garaba and his colleagues report in the journal Environmental Science & Technology. “We know more or less where it is, but the stuff is always moving,” he says.

Remote sensing could be useful for clean-up campaigns and for determining the amount and distribution of plastic pollution.

Garaba and his colleagues analysed data and photographs taken during a research campaign of the organization “The Ocean Cleanup”. This project, founded in 2013 by the Dutch inventor Boyan Slat, develops technologies to rid the world's oceans of plastic.

In 2016, the organization conducted an aerial expedition in order to quantify a large accumulation of litter between California and Hawaii known as the Great Pacific Garbage Patch. The results of this campaign were published in March 2018 in the journal Scientific Reports.

The research plane, a Lockheed C-130 Hercules, flew 400 metres above the sea. The Aerial Expedition used a combination of experienced human observers and advanced sensors to count the debris, including an advanced infrared sensor able to separate different colours of the infrared spectrum.

In the first instance, the team determined size, position, color and type of different plastic particles, without using the infrared data. The analysis showed that Aerial photography in the visible range was extremely helpful to detect large marine debris like ghost nets or crates.

“However, it is sometimes challenging to differentiate these from algae, wood fragments, sun-glints or wind chops”, says Garaba, who is currently senior researcher in the group Marine Sensor Systems headed by ICBM director Prof. Dr. Oliver Zielinski.

Green plastic items are easily mistaken for algae, white debris can be mixed up with sea spray or light reflections, explains Zielinski, who also contributed to the study.

However, infrared light reflected by plastic floating at the sea surface has distinct characteristics, Garaba and his colleagues report in their study. The researchers looked at these light characteristics reflected by 150 big plastic items such as ghost nets, ropes, crates or life belts.

They found out that marine garbage typically absorbs two bands of infrared light. These absorption features can be used to identify plastic. “We cannot only detect plastic in general but also distinguish different types”, Garaba says. Infrared signals are like a fingerprint which is unique for each material. “The recycling industry is using similar techniques in sorting plants”, Garaba explains, who also advises “The Ocean Cleanup” organization on questions of remote sensing.

According to Garaba, the new study offers the first proof of concept that remote sensing of ocean plastic in the infrared domain is feasible in the field. The results could be used to develop software for automatically identifying plastic garbage by remote sensing.

Wissenschaftliche Ansprechpartner:

Kontakt: Dr. Shungudzemwoyo Garaba, Tel.: 0441/798-8184, E-Mail: shungu.garaba@uol.de
Prof. Dr. Oliver Zielinski, Tel.: 0441/798-, E-Mail: oliver.zielinski@uol.de

Originalpublikation:

Shungudzemwoyo Garaba, Jen Aitken, Boyan Slat, Heidi M. Dierssen, Laurent Lebreton, Oliver Zielinski und Julia Reisser: „Sensing Ocean Plastics with an Airborne Hyperspectral Shortwave Infrared Imager“, Environ. Sci. Technol., 2018, 52 (20), pp 11699–11707, DOI: 10.1021/acs.est.8b02855

Weitere Informationen:

https://uol.de/icbm/marine-sensorsysteme/
https://pubs.acs.org/doi/10.1021/acs.est.8b02855

Dr. Corinna Dahm-Brey | idw - Informationsdienst Wissenschaft

More articles from Ecology, The Environment and Conservation:

nachricht Foxes in the city: citizen science helps researchers to study urban wildlife
14.12.2018 | Veterinärmedizinische Universität Wien

nachricht Machine learning helps predict worldwide plant-conservation priorities
04.12.2018 | Ohio State University

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>