Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Expansion of forests in the European Arctic could result in the release of carbon dioxide

18.06.2012
Carbon stored in Arctic tundra could be released into the atmosphere by new trees growing in the warmer region, exacerbating climate change, scientists have revealed.

The Arctic is getting greener as plant growth increases in response to a warmer climate. This greater plant growth means more carbon is stored in the increasing biomass, so it was previously thought the greening would result in more carbon dioxide being taken up from the atmosphere, thus helping to reduce the rate of global warming.

However, research published in Nature Climate Change, shows that, by stimulating decomposition rates in soils, the expansion of forest into tundra in arctic Sweden could result in the release of carbon dioxide to the atmosphere.

Dr Iain Hartley now based in Geography at the University of Exeter, and lead author of the paper, said: "Determining directly how carbon storage is changing in high-latitude ecosystems is very difficult because the majority of the carbon present is stored below ground in the soils. Our work indicates that greater plant biomass may not always translate into greater carbon storage at the ecosystem level.

"We need to better understand how the anticipated changes in the distribution of different plant communities in the Arctic affects the decomposition of the large carbon stocks in tundra soils if we are to be able to predict how arctic greening will affect carbon dioxide uptake or release in the future."

By measuring carbon stocks in vegetation and soils between tundra and neighbouring birch forest, it was shown that compared to tundra, the two-fold greater carbon storage in plant biomass in the forest was more than outweighed by the smaller carbon stocks in forest soils.

Furthermore, using a novel methodology based on measuring the radiocarbon content of the carbon dioxide being released, the researchers found that the birch trees appeared to be stimulating the decomposition of soil organic matter. Thus, the research was able to identify a mechanism by which the birch trees can contribute directly to reducing carbon storage in soils.

"Dr Gareth Phoenix, of the University of Sheffield's Department Animal and Plant Sciences, who collaborated on the research, added:

"It shows that the encroachment of trees onto Arctic tundra caused by the warming may cause large release of carbon to the atmosphere, which would be bad for global warming.

"This is because tundra soil contains a lot of stored organic matter, due to slow decomposition, but the trees stimulate the decomposition of this material. So, where before we thought trees moving onto tundra would increase carbon storage it seems the opposite may be true. So, more bad news for climate change."

The results of the study are in sharp contrast to the predictions of models which expect total carbon storage to increase with the greater plant growth. Rather, this research suggests that colonisation by productive, high-biomass, plant communities in the Arctic may not always result in greater capture of carbon dioxide, but instead net losses of carbon are possible if the decomposition of the large carbon stocks in Arctic soils are stimulated. This is important as Arctic soils currently store more carbon than is present in the atmosphere as carbon dioxide and thus have considerable potential to affect rates of climate change. It is yet to be seen whether this observed pattern is confined to certain soil conditions and colonising tree species, or whether the carbon stocks in the soils of other arctic or alpine ecosystems may be vulnerable to colonisation by new plant communities as the climate continues to warm.

The research took place within the Natural Environment Research Council (NERC)-funded Arctic Biosphere Atmosphere Coupling at Multiple Scales project (ABACUS; www.abacus-ipy.org) which was led by the University of Edinburgh. This particular study was carried out by a team from the University of Exeter, University of Stirling, NERC Radiocarbon Facility, James Hutton Institute (Aberdeen), the University of Sheffield, and Heriot-Watt University.

About the University of Exeter

The University of Exeter is a leading UK university and in the top one percent of institutions globally. It combines world-class research with very high levels of student satisfaction. Exeter is ranked 9th in The Sunday Times University Guide, 10th in the UK in The Times Good University Guide 2012 and 10th in the Guardian University Guide. In the 2008 Research Assessment Exercise (RAE) 90% of the University's research was rated as being at internationally recognised levels and 16 of its 31 subjects are ranked in the top 10, with 27 subjects ranked in the top 20.

The University has over 18,000 students and is developing its campuses in Exeter and Cornwall with almost £350 million worth of new facilities due for completion in 2012. It has accepted an invitation to join the Russell Group from 1 August 2012. www.exeter.ac.uk

For further information:
Press Office
University of Exeter
+44 (0)1392 722405
+44 (0)7738 493280
pressoffice@exeter.ac.uk
About NERC
The Natural Environment Research Council (NERC) is the UK's main agency for funding and managing world-class research, training and knowledge exchange in the environmental sciences. It coordinates some of the world's most exciting research projects, tackling major issues such as climate change, food security, environmental influences on human health, the genetic make-up of life on earth, and much more. NERC receives around £300 million a year from the government's science budget, which it uses to fund research and training in universities and its own research centres. www.nerc.ac.uk

Liz French | EurekAlert!
Further information:
http://www.exeter.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Despite government claims, orangutan populations have not increased. Call for better monitoring
06.11.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Increasing frequency of ocean storms could alter kelp forest ecosystems
30.10.2018 | University of Virginia

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>