Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Excess diesel emissions bring global health & environmental impacts

16.05.2017

Excess NOx emissions from diesel engines have been linked to approximately 38,000 premature deaths worldwide in 2015—mostly in the European Union, China, and India.

Nitrogen oxide (NOx) emissions from diesel cars, trucks, and buses are a major contributor to air pollution-related deaths worldwide—and the impacts are increasing, despite regulatory limits. Since 2015, revelations that Volkswagen and other manufacturers used “defeat devices” to hide from regulators the fact that their diesel cars were emitting too much NOx helped to heighten public awareness of the problem. But this is not just a defeat device problem.


Annual premature deaths attributable to diesel vehicle NOx emissions, 2015

Anenberg et al 2017

Both light-duty and heavy-duty diesel vehicles emit more NOx in on-road driving conditions than during laboratory certification testing, for reasons that may range from details of the engine calibration to equipment failure, inadequate maintenance, tampering by vehicle owners, the deliberate use of defeat devices, or simply deficient certification test procedures.

Solid quantitative data about the effects of diesel vehicle excess NOx emissions, both in terms of public health and environmental impacts, have been lacking—until now. A study published today in Nature examined 11 major vehicle markets representing more than 80% of new diesel vehicle sales in 2015 (Australia, Brazil, Canada, China, the EU, India, Japan, Mexico, Russia, South Korea, and the USA) and found that those vehicles emitted 13.2 million tons of NOx under real-world driving conditions—that’s 4.6 million tons more than the 8.6 million tons expected given the vehicles’ performance under official laboratory tests.

“Heavy-duty vehicles—commercial trucks and buses—were by far the largest contributor worldwide, accounting for 76% of the total excess NOx emissions. And just five markets (Brazil, China, the EU, India, and the USA) produced 90% of that. For light-duty vehicles—passenger cars, trucks, and vans—the European Union produced nearly 70% of the excess diesel NOx emissions,” says Josh Miller, researcher at the International Council on Clean Transportation (ICCT) and co-lead author of the study.

IIASA researchers Zbigniew Klimont and Chris Heyes contributed data on global NOx emissions to the study, from the IIASA Greenhouse gas - Air pollution Interactions and Synergies (GAINS) model.

“While globally, the on-road diesel vehicles contribute over 20% of total NOx emissions, in several regions their share is much larger--in the EU this exceeds 40%, nearly half of which is due to poor enforcement of existing standards. This level of emissions could also threaten the achievement of other environmental targets, which assume compliance with stricter emissions standards,” says Klimont.

NOx is a key contributor to outdoor air pollution in the forms of ground-level ozone and secondary fine particulate matter (PM2.5). Long-term exposure to these pollutants is linked to a range of adverse health outcomes, including disability and years of life lost due to stroke, ischemic heart disease, chronic obstructive pulmonary disease, and lung cancer—particularly in sensitive populations such as the elderly, who are at higher risk of chronic disease. The study combined results from in-use vehicle emissions testing studies with global atmospheric modeling, satellite observations, and health, crop yield, and climate models to estimate the damages caused by diesel NOx emissions.

The study estimates that excess diesel vehicle NOx emissions in 2015 were linked to ~38,000 premature deaths worldwide—mostly in the European Union, China, and India. “The consequences of excess diesel NOx emissions for public health are striking,” says Susan Anenberg, co-lead author of the study and cofounder of Environmental Health Analytics, LLC. “In Europe, the ozone mortality burden each year would be 10% lower if diesel vehicle NOx emissions were in line with certification limits.”

At a global level, the study projects that the impact of all real-world diesel NOx emissions will grow to 183,600 early deaths in 2040, unless governments act. In some countries, implementing the most stringent standards—already in place elsewhere—could substantially improve the situation, according to the researchers. “Globally, the single most important action to reduce the health impacts of excess diesel NOx emissions is for countries to implement and properly enforce a Euro VI tailpipe emission standard for heavy-duty vehicles. Combined with strengthened compliance for light-duty vehicles and next-generation standards, this would nearly eliminate real-world NOx emissions from diesel vehicles, which would avoid 174,000 air pollution-related deaths and 3 million years of life lost worldwide in the year 2040,” says Ray Minjares, co-author and Clean Air Program Lead at ICCT.

KEY FINDINGS:
• Increased air pollution from diesel NOx emissions caused 107,600 early deaths worldwide in 2015; 38,000 of these deaths are attributable to “excess NOx emissions”—emissions under real-world driving conditions compared with emissions under official laboratory tests. Approximately 80% of these deaths (for both excess NOx and total diesel NOx) occurred in three regions—the EU, China, and India. By comparison, in 2015 about 35,000 people died from road accidents in the US, and about 26,000 in the EU.
• China suffered the largest health burden of diesel NOx emissions (31,400 deaths, of which 10,700 are attributed to excess NOx), followed by the EU (28,500 total; 11,500 excess) and India (26,700 total; 9,400 excess).
• Light-duty diesel vehicles in the EU accounted for 6 out of every 10 deaths related to excess diesel NOx.
• An estimated 1,100 deaths from excess diesel NOx occurred in the United States in 2015, where heavy-duty diesel vehicles caused 10 times the impact of light-duty diesel cars.
• Laboratory-certified vehicles met mandatory emission limits but in the real world produced 2.3 times NOx emission limits for light-duty diesel vehicles and 1.45 times limits for heavy-duty diesel vehicles, on average.

The study was led by the International Council on Clean Transportation and Environmental Health Analytics, LLC., in collaboration with the University of Colorado, Stockholm Environment Institute, and the International Institute for Applied Systems Analysis. Funding for the study was provided by the Hewlett Foundation, ClimateWorks Foundation, European Climate Foundation, Energy Foundation China, and the NASA Health and Air Quality Applied System Team.

Reference
Anenberg S, Miller J, Minjares R, Du L, Henze D, Lacey F, Malley C, Emberson L, Franco V, Klimont Z, and Heyes C (2017). Impacts and mitigation of excess diesel NOx emissions in 11 major vehicle markets. Nature 15 May 2017.

Weitere Informationen:

http://www.iiasa.ac.at/web/home/research/researchPrograms/air/GAINS.en.html
http://www.iiasa.ac.at/web/home/about/achievements/scientificachievementsandpoli...

Katherine Leitzell | idw - Informationsdienst Wissenschaft

Further reports about: IIASA NOx environmental impacts global health vehicles

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling of PET Bottles: New Ideas for Resource Cycles in Germany
25.06.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>