Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Evolution Flashback: Ecologist Brings Century-old Eggs to Life

20.07.2009
Cornell ecologist brings century-old eggs to life to study evolution. By hatching these eggs, scientists can compare time-suspended hatchlings with their more contemporary counterparts to better understand how a species may have evolved.

Suspending a life in time is a theme that normally finds itself in the pages of science fiction, but now such ideas have become a reality in the annals of science.

Cornell ecologist Nelson Hairston Jr. is a pioneer in a field known loosely as “resurrection ecology,” in which researchers study the eggs of such creatures as zooplankton – tiny, free-floating water animals – that get buried in lake sediments and can remain viable for decades or even centuries. By hatching these eggs, Hairston and others can compare time-suspended hatchlings with their more contemporary counterparts to better understand how a species may have evolved in the meantime.

The researchers take sediment cores from lake floors to extract the eggs; the deeper the egg lies in the core, the older it is. They then place the eggs in optimal hatching conditions, such as those found in spring in a temperate lake, and let nature take its course.

“We can resurrect them and discover what life was like in the past,” said Hairston, who came to Cornell in 1985 and is a professor and chair of Cornell’s Department of Ecology and Evolutionary Biology. “Paleo-ecologists study microfossils, but you can’t understand much physiologically or behaviorally” with that approach, he said.

Hairston first became interested in the possibilities of studying dormant eggs in the late 1970s, when he was an assistant professor of zoology at the University of Rhode Island. There, he noticed that the little red crustaceans – known as copepods – in the pristine lake behind his Rhode Island home disappeared in the summer, only to return as larvae in the fall.

The observation prompted him to study why they disappear, research that revealed the copepods stay active under the ice in the winter, but they die out as their eggs lie dormant on the lake floor through the summer when the lake’s fish are most active. When the fish become less active in the fall, larvae hatch from the eggs, and the copepods continue their life cycle.

This time suspension, where zooplankton pause their life cycles to avoid heavy predation or harsh seasonal and environmental conditions, also increases a species’ local gene pool, with up to a century’s worth of genetic material stored in a lake bed, Hairston said. When insects, nesting fish and boat anchors stir the mud, they can release old eggs that hatch and offer a wider variety of genetic material to the contemporary population.

In 1999 Hairston and colleagues published a paper in Nature that described how 40-year-old resurrected eggs could answer whether tiny crustaceans called Daphnia in central Europe’s Lake Constance had evolved to survive rising levels of toxic cyanobacteria, known as blue-green algae. In the 1970s, phosphorus levels from pollution rose in the lake, increasing the numbers of cyanobacteria. The researchers hatched eggs from the 1960s and found they could not survive the toxic lake conditions, but Daphnia from the 1970s had adapted and survived.

Hairston and colleagues have organized a resurrection ecology symposium in
September 2009, in Herzberg, Switzerland, to bring together researchers in this growing new field.

Blaine Friedlander | Newswise Science News
Further information:
http://www.cornell.edu

More articles from Ecology, The Environment and Conservation:

nachricht Waste in the water – New purification techniques for healthier aquatic ecosystems
24.07.2018 | Eberhard Karls Universität Tübingen

nachricht Plenty of habitat for bears in Europe
24.07.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>