Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Europeans have unknowingly contributed to the spread of invasive plant species in North America

01.07.2015

The role of plant traits might be overestimated by biologists in studies on plant invasiveness. Anthropogenic factors such as whether the spcies was being cultivated proved to be more important. These conclusions were made from a study on Central European plants that were introduced by humans to North America and over time became naturalised in this continent. Naturalisation of new plant species, a process that makes it a permanent member of the local flora, most strongly depends on residence time in the invaded range and the number of habitats occupied by species in their native range, researchers reported in the journal Ecology.

The study was jointly conducted by scientists from The Czech Academy of Sciences of the Czech Republic (AV ČR) and the Helmholtz Centre for Environmental Research (UFZ) and also involved scientists from the Charles University in Prague, Martin-Luther-University Halle-Wittenberg, the German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Masaryk University in Brno, Biota of North America Program, North Carolina and other institutions.


The common dandelion (Taraxacum officinale) is one of these Central European plants that were introduced by humans to North America and over time became naturalised in this continent.

Foto: André Künzelmann/UFZ


The oxeye daisy (Leucanthemum vulgare) became in North America invasive, too.

Photo: Norma Neuheiser/ UFZ

Invasive species that spread widely in their invaded range can not only have detrimental impacts on ecosystems and threaten biodiversity but may also cause massive economic damage in agriculture and forestry. Once a species has already been naturalised, it can often no longer be fully controlled – even after considerable efforts.

Since the 1980s biologists have been looking into ways of predicting which species show invasive behaviour and which species do not – a complex and multi-facetted problem. One thing that remains certain, however, is that the majority of alien species have become naturalised in their new home range with the help of humans.

Over the course of history many species arrived in other parts of the world with the Europeans – and North America is no exception. Intensive trade between the two continents in the last five hundred years has led to one of the largest processes of species exchange. Since this propagation route has been symptomatic for the spread of many species across continents, scientists have investigated this process more closely in an attempt to find out what makes certain species successful.

For this they used the most comprehensive database available so far that provides information on central European plant species found in North America. A comparison was made between the flora of the Czech Republic (representative of plant species found in Central Europe) and the most comprehensive database on vascular plants of North America.

It was found that out of 1218 species of seed plants from Central Europe, 466 taxa had already become naturalised in North America and had formed populations that persist on their own in the wild. The comprehensive information from the database enabled the scientists to compare and analyse numerous traits such as plant height, number of seeds or methods of pollination with their geographic distribution.

In order to analyse this volume of information, the team developed a model that describes the invasion process of Central European plant species in the USA and Canada in terms of different drivers, showing just how efficient certain factors are as drivers of invasion. Purely biological traits such as specific leaf area, plant height or seed persistence played a much less significant role compared to geographic or anthropogenic factors.

For example, the residence time of a species in its invaded range, i.e., the time since introduction of that species, accounts for a 20 times higher risk of invasion compared to one of the important biological traits, which was the ability of seed to persist in soil for several years in a viable state. Whether or not the species had been cultivated in its native or new region also played a major role.

„Our results clearly indicate the overwhelming role of these factors in determining invasion, with the residence time having about three times as strong an effect as the propagule pressure resulting from the cultivation in the invaded range“, explains Prof. Petr Pyšek from the Institute of Botany of The Czech Academy of Sciences.

That the cultivation of plants by humans plays a major role in these processes is further illustrated by the fact that only six percent of the plants analysed in this study had never been cultivated during the process of their naturalisation. This confirms that the vast majority of invasive plant species had previously been associated with humans in one way or another.

„These new results from North America confirm the results that were reported for Europe two years ago: socioeconomic factors and thus the influence of humans have a stronger influence on invasion processes than the biological traits of species“, emphasizes Prof. Dr. Ingolf Kühn from the UFZ in Halle (Saale). Furthermore, “generalists” (species that are less sensitive to environmental factors with the ability to reproduce quickly) do not only occur more frequently than invasive species, but are also cultivated more often than “specialists”.

„One of our most important messages is therefore that studies on invasive species, which do not take into account the characteristics of the native range or residence time in the invaded range, may seriously overestimate the role of biological traits“, states Ingolf Kühn.

Spurious predictions of plant invasiveness could then be the consequence. Studies such as the one at hand therefore contribute to making better assessments of future risks, since the factors mentioned here can also be applied to those species that have not yet made their way to regions outside their distribution and may therefore represent potential problems in the future.
Tilo Arnhold

Publication:
Pyšek, P., Manceur, A.M., Alba, C., McGregor, K.F., Pergl, J., Štajerová, K., Chytrý, M., Danihelka, J., Kartesz, J., Klimešová, J., Lučanová, M., Moravcová, L., Nishino, M., Sádlo, J., Suda, J., Tichý, L., Kühn, I. (2015): Naturalization of central European plants in North America: species traits, habitats, propagule pressure, residence time. Ecology. 96: 762-774.
http://dx.doi.org/10.1890/14-1005.1
The study was funded by the PLADIAS Centre of Excellence from the Czech Science Foundation (GAČR) and The Czech Academy of Sciences (AS CR).

Further Informationen:
Prof. Dr. Ingolf Kühn
Martin-Luther University Halle-Wittenberg & Helmholtz Centre for Environmental Research (UFZ) & German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig
Tel.: +49 (0)345- 558-5311
http://www.ufz.de/index.php?en=821
and
Prof. Dr. Petr Pyšek
Department of Invasion Ecology, Institute of Botany, The Czech Academy of Sciences
Tel.: +420 271 015 266
http://www.ibot.cas.cz/personal/pysek/
or via
Tilo Arnhold, Susanne Hufe (UFZ press office)
Phone: +49 (0)341-235-1635, -1630
http://www.ufz.de/index.php?en=640

Links:
Database of EU research project DAISIE (Delivering Alien Invasive Species Inventories for Europe): http://www.europe-aliens.org

European Alien Species Information Network: http://easin.jrc.ec.europa.eu

Previous press releases on the subject:
Research projects contribute to shaping EU regulation to control invasive species (Press release, 28th January 2015)
http://www.ufz.de/index.php?de=33488
Chile is more dangerous for Argentina than vice versa (Press release, 31th July 2011)
http://www.ufz.de/index.php?en=21942
Consequences of being rich: wealth and population are key drivers of invasive species in Europe (Press release, 16th June 2010)
http://www.ufz.de/index.php?de=19723
Ecologists Put Price Tag on Invasive Species (Press release, 22nd April 2009)
http://www.ufz.de/index.php?en=18001
Significant increase in alien plants in Europe (Press release 17th September 2008)
http://www.ufz.de/index.php?en=17176

In the Helmholtz Centre for Environmental Research (UFZ), scientists conduct research into the causes and consequences of far-reaching environmental changes. Their areas of study cover water resources, biodiversity, the consequences of climate change and possible adaptation strategies, environmental technologies and biotechnologies, bio-energy, the effects of chemicals in the environment and the way they influence health, modelling and social-scientific issues. Its guiding principle: Our re-search contributes to the sustainable use of natural resources and helps to provide long-term protection for these vital assets in the face of global change. The UFZ employs more than 1,100 staff at its sites in Leipzig, Halle and Magdeburg. It is funded by the federal government, Saxony and Saxony-Anhalt. http://www.ufz.de/

The Helmholtz Association contributes to solving major and urgent issues in society, science and industry through scientific excellence in six research areas: Energy, earth and environment, health, key technologies, structure of matter as well as aviation, aerospace and transportation. The Helmholtz Association is the largest scientific organisation in Germany, with 35,000 employees in 18 research centres and an annual budget of around €3.8 billion. Its work is carried out in the tradition of the great natural scientist Hermann von Helmholtz (1821-1894). http://www.helmholtz.de/

Tilo Arnhold | Helmholtz-Zentrum für Umweltforschung - UFZ

More articles from Ecology, The Environment and Conservation:

nachricht Rethinking the science of plastic recycling
24.10.2019 | DOE/Argonne National Laboratory

nachricht Sinking groundwater levels threaten the vitality of riverine ecosystems
04.10.2019 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

Im Focus: Distorted Atoms

In two experiments performed at the free-electron laser FLASH in Hamburg a cooperation led by physicists from the Heidelberg Max Planck Institute for Nuclear physics (MPIK) demonstrated strongly-driven nonlinear interaction of ultrashort extreme-ultraviolet (XUV) laser pulses with atoms and ions. The powerful excitation of an electron pair in helium was found to compete with the ultrafast decay, which temporarily may even lead to population inversion. Resonant transitions in doubly charged neon ions were shifted in energy, and observed by XUV-XUV pump-probe transient absorption spectroscopy.

An international team led by physicists from the MPIK reports on new results for efficient two-electron excitations in helium driven by strong and ultrashort...

Im Focus: A Memory Effect at Single-Atom Level

An international research group has observed new quantum properties on an artificial giant atom and has now published its results in the high-ranking journal Nature Physics. The quantum system under investigation apparently has a memory - a new finding that could be used to build a quantum computer.

The research group, consisting of German, Swedish and Indian scientists, has investigated an artificial quantum system and found new properties.

Im Focus: Shedding new light on the charging of lithium-ion batteries

Exposing cathodes to light decreases charge time by a factor of two in lithium-ion batteries.

Researchers at the U.S. Department of Energy's (DOE) Argonne National Laboratory have reported a new mechanism to speed up the charging of lithium-ion...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

Smart lasers open up new applications and are the “tool of choice” in digitalization

30.10.2019 | Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

 
Latest News

Magnets for the second dimension

12.11.2019 | Machine Engineering

New efficiency world record for organic solar modules

12.11.2019 | Power and Electrical Engineering

Non-volatile control of magnetic anisotropy through change of electric polarization

12.11.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>