Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Europe's scientists call for more effort in tackling rising ocean acidity

19.05.2010
European Science Foundation presents ocean acidification report at EU Maritime Day 2010

Ten years ago, ocean acidification was a phenomenon only known to small group of ocean scientists. It's now recognised as the hidden partner of climate change, prompting calls for an urgent, substantial reduction in carbon emissions to reduce future impacts.

The 'Impacts of Ocean Acidification' science policy briefing presented by the European Science Foundation on 20 May for European Maritime Day 2010 gives a comprehensive view of current research. Prepared by leading scientists from Europe and the USA, it highlights the need for a concerted, integrated effort internationally to research and monitor the effects of ocean acidification on marine environments and human communities.

The seas and oceans, which absorb almost a third of the greenhouse gas emissions in the atmosphere, are rapidly becoming more acidic due to increases in carbon dioxide in the atmosphere from burning fossil fuels. Carbon dioxide produces carbonic acid when it dissolves in seawater and up to now, the oceans have buffered the effects of global warming by absorbing almost a third of the carbon dioxide emitted from human fossil fuel use. Today the oceans are more acidic than they have ever been for at least 20 million years. This chemical change could cause significant consequences to marine ecosystems and the goods and services that they provide.

For example, coastal zones such as in the Mediterranean and North Seas are rich in calcifying organisms such as shell fish that may be particularly sensitive to large changes in carbon chemistry. Molluscs make their shells by extracting dissolved calcium carbonate from seawater and using it to form two minerals, calcite and aragonite. Corals use the same process to make their external skeletons. As water becomes more acidic, the concentration of calcium carbonate falls so that eventually there is so little that shells or skeletons cannot form.

"Ocean acidification is already occurring and will get worse. And it's happening on top of global warming, so we are in double trouble. The combination of the two may be the most critical environmental and economic challenge of the century," said Professor Jelle Bijma, lead author of the report and a biogeochemist at the Alfred Wegener Institute in Germany. "Under a business-as-usual scenario, predictions for the end of the century are that the surface oceans will become 150 per cent more acidic - and this is a hell of a lot."

Integrated research on the impacts of ocean acidification is still a very new field – the full implications of these changes are unclear for marine ecosystems and fisheries resources, including fish stocks, shellfish and coral reefs. Economic research on systems for managing marine resources is essential to understand the impacts on fisheries and the human communities that rely on them.

Current European and national programmes are relatively small compared to the combined challenges posed by ocean acidification and global warming. Existing research has mainly been initiated by individual researchers or teams, with limited overall coordination. Two years ago the European Project on Ocean Acidification was funded by the EU and within the last year Germany and the UK have funded national ocean acidification programmes - BIOACID and the UK Ocean Acidification Research Programme respectively. As others emerge they need to be brought together through a large-scale research initiative taking full advantage of the combined scientific expertise across the European countries and internationally. One of the first steps toward integration is to develop a specific database building on the national research activities in ocean acidification.

The key recommendations are available in the science policy briefing: www.esf.org/publications/science-policy-briefings.html

Chloe Kembery | EurekAlert!
Further information:
http://www.esf.org
http://www.esf.org/publications/science-policy-briefings.html

More articles from Ecology, The Environment and Conservation:

nachricht Waste in the water – New purification techniques for healthier aquatic ecosystems
24.07.2018 | Eberhard Karls Universität Tübingen

nachricht Plenty of habitat for bears in Europe
24.07.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>