Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Eavesdropping plants prepare to be attacked

08.08.2013
In a world full of hungry predators, prey animals must be constantly vigilant to avoid getting eaten. But plants face a particular challenge when it comes to defending themselves.

"One of the things that makes plants so ecologically interesting is that they can't run away," says John Orrock, a zoology professor at the University of Wisconsin–Madison. "You can't run, you can't necessarily hide, so what can you do? Some plants make themselves less tasty."

Some do this either by boosting their production of toxic or unpleasant-tasting chemicals (think cyanide, sulfurous compounds, or acids) or through building physical defenses such as thorns or tougher leaves.

But, he adds, "Defense is thought to come at a cost. If you're investing in chemical defenses, that's energy that you could be putting into growth or reproduction instead."

To balance those costs with survival, it may behoove a plant to be able to assess when danger is nigh and defenses are truly necessary. Previous research has shown that plants can induce defenses against herbivores in response to airborne signals from wounded neighbors.

But cues from damaged neighbors may not always be useful, especially for the first plant to be attacked, Orrock says. Instead he asked whether plants — here, black mustard, a common roadside weed — can use other types of cues to anticipate a threat.

In a presentation Aug. 6 at the 2013 Ecological Society of America Annual Meeting in Minneapolis, he and co-author Simon Gilroy, a UW–Madison botany professor, reported that the plants can eavesdrop on herbivore cues to mount a defensive response even before any plant is attacked.

Slugs and snails are generalist herbivores that love to munch on mustard plants and can't help but leave evidence of their presence — a trail of slime, or mucus. Where there's slime, there's a snail. So Orrock treated black mustard seeds or new seedlings with snail mucus, then tested how appealing the resulting plants were to hungry snails.

The result? Getting slimed made the plants become less palatable. "That shows that plants are paying attention to generalist herbivore cues and that they turn on their defenses before they even get attacked," says Orrock.

What's more, they used the information in a time-sensitive way. Plants exposed only as seeds were eaten more — evidence of lower defenses — than those exposed as seedlings.

"The more recently they receive the information about impending attack, the more likely they are to use the information to defend themselves," he says. "Not only do they eavesdrop, they eavesdrop in a sophisticated way."

With Gilroy, Orrock is now exploring the genetics — and possibly evolution — of induced defenses. "If selection is strong enough from generalist snail herbivores to drive the evolution of eavesdropping by plants, then it might be far more common than we think," he says.

-- Jill Sakai, 608-262-9772, jasakai@wisc.edu

Sidebar:

How did they do that? Collecting snail slime

"It's not easy to get mucus out of a snail," says John Orrock. For one thing, "they make three different kinds."

The UW–Madison zoology professor used snail slime to show that black mustard plants can use cues of predator proximity to trigger defense mechanisms against the hungry snails.

But his first challenge was collecting enough slime to treat the plants. Initially he turned the snails upside down and tapped them, but what bubbled up was just defensive mucus, not the locomotion mucus (or "slime trail") he sought.

Ultimately he devised a low-tech but effective solution: let the snails crawl around overnight on a piece of filter paper lining the bottom of a small plastic deli container, then wash the filter paper and use the resulting slime water to treat the seeds and plants.

"One thing that's so cool about ecology is that you can do really enlightening experiments very simply. Clearly, if you're interested in the molecular or chemical aspects of the question, this isn't going to cut it. But if you want to know if a plant gets paranoid with slime? This," Orrock says, shaking the container, "plus snails equals results."

John Orrock | EurekAlert!
Further information:
http://www.wisc.edu

Further reports about: Cyanide Eavesdropping acids mustard plant sulfurous compounds

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling of PET Bottles: New Ideas for Resource Cycles in Germany
25.06.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>