Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using earthquake sensors to track endangered whales

14.05.2013
The fin whale is the second-largest animal ever to live on Earth. It is also, paradoxically, one of the least understood. The animal’s huge size and global range make its movements and behavior hard to study.
A carcass that washed up on a Seattle-area beach this spring provided a reminder that sleek fin whales, nicknamed “greyhounds of the sea,” are vulnerable to collision when they strike fast-moving ships. Knowing their swimming behaviors could help vessels avoid the animals. Understanding where and what they eat could also help support the fin whale’s slowly rebounding populations.

University of Washington oceanographers are addressing such questions using a growing number of seafloor seismometers, devices that record vibrations. A series of three papers published this winter in the Journal of the Acoustical Society of America interprets whale calls found in earthquake sensor data, an inexpensive and non-invasive way to monitor the whales. The studies are the first to match whale calls with fine-scale swimming behavior, providing new hints at the animals’ movement and communication patterns.

The research began a decade ago as a project to monitor tremors on the Juan de Fuca Ridge, a seismically active zone more than a mile deep off the Washington coast. That was the first time UW researchers had collected an entire year’s worth of seafloor seismic data.

A seismometer inserted into a hole drilled in seafloor lava. Eight of these instruments were installed at an ocean spreading-center volcano 150 miles off Vancouver Island. A data recording device is enclosed in the yellow sphere. In three years of operation the network detected nearly 40,000 small earthquakes, and hundreds of thousands of fin-whale calls.

“Over the winter months we recorded a lot of earthquakes, but we also had an awful lot of fin-whale calls,” said principal investigator William Wilcock, a UW professor of oceanography. At first the fin whale calls, which at 17 to 35 vibrations per second overlap with the seismic data, “were kind of just a nuisance,” he said.

In 2008 Wilcock got funding from the Office of Naval Research to study the previously discarded whale calls.

Dax Soule, a UW doctoral student in oceanography, compared the calls recorded by eight different seismometers. Previous studies have done this for just two or three animals at a time, but the UW group automated the work to analyze more than 300,000 whale calls.

The method is similar to how a smartphone’s GPS measures a person’s location by comparing paths to different satellites. Researchers looked at the fin whale’s call at the eight seismometers to calculate a position. That technique let them follow the animal’s path through the instrument grid and within 10 miles of its boundaries.

Soule created 154 individual fin whale paths and discovered three categories of vocalizing whales that swam south in winter and early spring of 2003. He also found a category of rogue whales that traveled north in the early fall, moving faster than the other groups while emitting a slightly higher-pitched call.

“One idea is that these are juvenile males that don’t have any reason to head south for the breeding season,” Soule said. “We can’t say for sure because so little is known about fin whales. To give you an idea, people don’t even know how or why they make their sound.”

The fin whale’s call is not melodic, but that’s a plus for this approach. The second-long chirp emitted roughly every 25 seconds is consistently loud and at the lower threshold of human hearing, so within range of earthquake monitoring instruments. These loud, repetitive bleeps are ideally suited for computer analysis.

Michelle Weirathmueller, a UW doctoral student in oceanography, used Soule’s triangulations to determine the loudness of the call. She found the fin whale’s call is surprisingly consistent at 190 decibels, which translates to 130 decibels in air – about as loud as a jet engine.

Knowing the consistent amplitude of the fin whale’s song will help Weirathmueller track whales with more widely spaced seismometer networks, in which a call is recorded by only one instrument at a time. Those include the Neptune Canada project, the U.S. cabled observatory component of the Ocean Observatories Initiative, and the huge 70-seismometer Cascadia Initiative array that’s begun to detect tremors off the Pacific Northwest coast.

“We’d like to know where the fin whales are at any given time and how their presence might be linked to food availability, ocean conditions and seafloor geology,” Weirathmueller said. “This is an incredibly rich dataset that can start to pull together the information we need to link the fin whales with their deep-ocean environments.”

For more information, contact Wilcock at 206-543-6043 or wilcock@uw.edu, Soule at 206-543-8542 or daxsoule@uw.edu and Weirathmueller at 206-543-8542 or michw@uw.edu. Wilcock is traveling on the East Coast until May 15 and best reached by e-mail or at 206-601-1184.

Hannah Hickey | EurekAlert!
Further information:
http://www.washington.edu/news/2013/05/13/using-earthquake-sensors-to-track-endangered-whales/

More articles from Ecology, The Environment and Conservation:

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

nachricht 100 % Organic Farming in Bhutan – a Realistic Target?
15.06.2018 | Humboldt-Universität zu Berlin

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>