Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dominant ant species significantly influence ecosystems

01.02.2016

Studies in tropical rainforests indicate that often single ant species cause the majority of resource consumption / Large differences between day and night

Ants and humans represent approximately the same amount of biomass on our planet. Together with other social insects, ants make up a third of the entire animal biomass in the tropics and hence have a major effect on their ecosystems.


An acrobat ant (Crematogaster modiglianii) transporting a plant seed (Malaysia, Borneo)

photo/©: Florian Menzel


Two ant species Crematogaster levior (left) and Ectatomma tuberculatum (right) tending plant-sucking cicada larvae (French Guiana)

photo/©: Florian Menzel

Researchers at Johannes Gutenberg University Mainz (JGU) investigated the role of different ant species in various ecosystem processes in tropical rain forests. They discovered that the dominant role is often played by only a few or even a single ant species when it comes to consuming food resources, something that can make an ecosystem vulnerable.

Researchers working with Dr. Florian Menzel of the JGU Institute of Zoology have identified ant species in the forests of Borneo that are extremely efficient and exploit the major proportion of the food resources available. This is the first time that biologists quantified resource consumption by ants in the field and differentiated between diurnal and nocturnal ant communities.

The stability of an ecosystem depends on various factors, such as whether and how fast a system can return to its original state after disturbance. The capacity of an ecosystem to cope with the loss of species also contributes to its stability.

How ecosystem stability is affected by anthropogenic loss of biodiversity has been extensively studied in the past years. Generally, a high biodiversity leads to a high stability of the ecosystem. However, how tight this relation is and which other factors influence it often remains unknown.

The Mainz-based biologists conducted their research in two forests each in French Guiana (South America) and in Borneo (Southeast Asia). They set up 64 collection points in each forest where they provided natural food sources, which included living insects of various sizes, dead insects, sugars that occur in sweet fruit and nectar as well as sugars that occur in honeydew produced by aphids.

"We analyzed which ant species went to which food types and then measured the extent to which each species contributed to its consumption," explained Menzel. "This enabled us to calculate the stability of the system."

Diversity and stability are often lower at night

The tropics harbor an enormous biodiversity, often with more than 100 ant species in just one hectare of forest. Some are only active during the day, others only at night. Whether a species is diurnal, nocturnal, or both can have considerable influence on the stability of an ecosystem. If certain species are only active during the day and others only at night, this increases the overall stability of the ecosystem.

The researchers of Mainz University discovered that, in some forests, species richness and stability are significantly lower at night compared to daytime. They also showed that very high food turnover was only achieved when 'high-performance ants' were present, but not when many less efficient species equally contributed to food consumption. In Borneo, the most active ant species in the study areas accounted for more than half of the overall food consumption.

"These highly efficient species can dominate the entire system in some forests. They increase temporary resource turnover, but make the system more vulnerable because other species cannot compensate their performance if their numbers diminish," Menzel added. This finding is particularly important because ants play a major role in many ecosystem processes. For example, they help to break down dead animal biomass, consume seeds, and prey on other insects.

In the future, the JGU-based evolutionary biologists plan to further study this phenomenon to find out what exactly makes these efficient species so efficient. The responsible factors may be higher food specialization, the ability to quickly discover food, or morphological aspects. Whatever the causes, it has now become apparent that it is essential to bear in mind that ecosystem processes differ between day and night, such that it is necessary to investigate the stability of an ecosystem at multiple times of day.

Photos:
http://www.uni-mainz.de/bilder_presse/10_zoologie_ameisen_tropen_01.jpg
An acrobat ant (Crematogaster modiglianii) transporting a plant seed (Malaysia, Borneo)
photo/©: Florian Menzel

http://www.uni-mainz.de/bilder_presse/10_zoologie_ameisen_tropen_02.jpg
Two ant species Crematogaster levior (left) and Ectatomma tuberculatum (right) tending plant-sucking cicada larvae (French Guiana)
photo/©: Florian Menzel

http://www.uni-mainz.de/bilder_presse/10_zoologie_ameisen_tropen_03.jpg
Fungus-growing ants of the genus Cyphomyrmex retrieve flower petals to serve as a substrate for their fungus (French Guiana)
photo/©: Florian Menzel

Publication:
Mickal Houadria et al.
The relation between circadian asynchrony, functional redundancy and trophic performance in tropical ant communities
Ecology , 29 January 2016
DOI: 10.1890/14-2466.1
http://www.esajournals.org/doi/abs/10.1890/14-2466.1

Further information:
Dr. Florian Menzel
Evolutionary Biology
Institute of Zoology
Johannes Gutenberg University Mainz (JGU)
55099 Mainz, GERMANY
phone +49 6131 39-27848
fax +49 6131 39-27850
E-mail: menzelf@uni-mainz.de
http://www.bio.uni-mainz.de/zoo/evobio/73_ENG_HTML.php
http://www.bio.uni-mainz.de/zoo/evobio/index_ENG.php

Weitere Informationen:

http://www.bio.uni-mainz.de/zoo/evobio/index_ENG.php – Evolutionary Biology Group at Mainz University

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Ecology, The Environment and Conservation:

nachricht Despite government claims, orangutan populations have not increased. Call for better monitoring
06.11.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Increasing frequency of ocean storms could alter kelp forest ecosystems
30.10.2018 | University of Virginia

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Epoxy compound gets a graphene bump

14.11.2018 | Materials Sciences

Microgel powder fights infection and helps wounds heal

14.11.2018 | Health and Medicine

How algae and carbon fibers could sustainably reduce the athmospheric carbon dioxide concentration

14.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>