Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deep-sea ecosystems affected by climate change

04.11.2009
The vast muddy expanses of the abyssal plains occupy about 60 percent of the Earth's surface and are important in global carbon cycling. Based on long-term studies of two such areas, a new paper in the Proceedings of the National Academy of Sciences (PNAS) shows that animal communities on the abyssal seafloor are affected in a variety of ways by climate change.

Historically, many people, including marine scientists, have considered the abyssal plains, more than 2,000 meters below the sea surface, to be relatively isolated and stable ecosystems.

However, according to Ken Smith, a marine ecologist at the Monterey Bay Aquarium Research Institute (MBARI) and lead author of the recent PNAS article, changes in the Earth's climate can cause unexpectedly large changes in deep-sea ecosystems. Based on 18 years of studies, Smith and his coauthors show that such ecosystem changes occur over short time scales of weeks to months, as well as over longer periods of years to decades.

The recent paper covers two time-series studies-one at "Station M," about 220 kilometers off Central California coast, and a second on the Porcupine Abyssal Plain, several hundred kilometers southwest of Ireland. The flat, muddy seafloor at these sites lies between 4,000 and 5,00 meters beneath the ocean surface.

In this cold, dark environment, very little food is available. What food there is takes the form of bits of organic debris drifting down from the sunlit surface waters, thousands of meters above. During it's long descent, this organic matter may be eaten, excreted, and decomposed, drastically reducing it's nutritive value. It is estimated that less than five percent of the organic matter produced at the surface reaches the abyssal plains.

Research by Smith and his co-authors has shown that the amount of food reaching the deep sea varies dramatically over time. For example, at the Porcupine Abyssal Plain, the amount of organic material sinking from above can vary by almost an order of magnitude from one year to another.

Such variations in food supply have several causes. On a seasonal basis, algal blooms near the sea surface send pulses of organic material to the deep seafloor. Other factors may also come into play, including how much of the algae is eaten by marine animals, and how the material is moved by ocean currents.

The authors point out that global climate change could affect the food supply to the deep sea in many ways. Some relevant ocean processes that may be affected by climate change include wind-driven upwelling, the depth of mixing of the surface waters, and the delivery of nutrients to surface waters via dust storms. Climate-driven changes in these processes are likely to lead to altered year-to-year variation in the amount of organic material reaching the seafloor.

As one example of ongoing changes in deep-sea ecosystems, the authors point to the fact that one of the most important groups of fish on the deep seafloor, the grenadiers, doubled in abundance between 1989 and 2004 at Station M. They speculate that change may be linked to a combination of climate change and commercial fishing.

In another example, some previously common species of sea cucumbers at Station M virtually disappeared after 1998, while others became much more abundant. These changes were tied to a significant El Niño event in 1997-98. Similar dramatic year-to-year changes were observed at Porcupine Abyssal Plain, where they were linked to changes in both the quantity and type of food reaching the seafloor.

Based on their observations, the authors conclude that long-term climate change is likely to influence both deep-sea communities and the chemistry of their environment. According to Smith, "Essentially, deep-sea communities are coupled to surface production. Global change could alter the functioning of these ecosystems and the way carbon is cycled in the ocean."

Changes in deep-sea carbon cycling are not considered in most climate models, an oversight that the authors believe should be corrected. In order to obtain the information needed to include seafloor-community changes in global climate models, the authors suggest that long-term, automated systems must be developed for monitoring the deep sea.

Smith and his colleagues point out that deep-sea ecosystems are prime targets for monitoring using cabled ocean observatories, new seafloor moorings, and robots, which can provide continuous data to capture both long-term and short-term changes in seafloor conditions. As co-author Henry Ruhl put it, "What we need is to move beyond fragmented research programs and transition to a comprehensive global effort to monitor deep-sea ecosystems."

The research at Station M was sponsored by grants from the National Science Foundation and the David and Lucile Packard Foundation. Research at the Porcupine Abyssal Plain Sustained Observatory site was supported by the European Union and the Natural Environment Research Council of the United Kingdom.

Kim Fulton-Bennett | MBARI
Further information:
http://www.mbari.org
http://www.mbari.org/news/news_releases/2009/smith-climate/smith-climate-release.html

More articles from Ecology, The Environment and Conservation:

nachricht Sinking groundwater levels threaten the vitality of riverine ecosystems
04.10.2019 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Protecting our climate, the environment and nature is the focus of a new communications project
04.10.2019 | IDEA TV

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Quantum physics: Ménage à trois photon-style

16.10.2019 | Physics and Astronomy

Airborne chemicals instantly identified using new technology developed at NTU Singapore

16.10.2019 | Life Sciences

Always on beat: ultrashort flashes of light under optical control

16.10.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>