Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dams provide resilience to Columbia from climate change impacts

26.09.2013
Dams have been vilified for detrimental effects to water quality and fish passage, but a new study suggests that these structures provide “ecological and engineering resilience” to climate change in the Columbia River basin.

The study, which was published in the Canadian journal Atmosphere-Ocean, looked at the effects of climate warming on stream flow in the headwaters and downstream reaches of seven sub-basins of the Columbia River from 1950 to 2010.

The researchers found that the peak of the annual snowmelt runoff has shifted to a few days earlier, but the downstream impacts were negligible because reservoir management counteracts these effects.

“The dams are doing what they are supposed to do, which is to use engineering – and management – to buffer us from climate variability and climate warming,” said Julia Jones, an Oregon State University hydrologist and co-author on the study. “The climate change signals that people have expected in stream flow haven’t been evident in the Columbia River basin because of the dams and reservoir management. That may not be the case elsewhere, however.”

The study is one of several published in a special edition of the journal, which examines the iconic river as the United States and Canada begin a formal 10-year review of the Columbia River water management treaty in 2014. The treaty expires in 2024.

Jones said the net effect of reservoir management is to reduce amplitude of water flow variance by containing water upstream during peak flows for flood control, or augmenting low flows in late summer. While authorized primarily for flood control, reservoir management also considers water release strategies for fish migration, hydropower, ship navigation and recreation.

These social forces, as well as climate change impacts, have the potential to create more variability in river flow, but the decades-long hydrograph chart of the Columbia River is stable because of the dams, said Jones, who is on the faculty of the College of Earth, Ocean, and Atmospheric Sciences at OSU.

“The climate change signal on stream flow that we would expect to see is apparent in the headwaters,” she said, “but not downstream. Historically, flow management in the Columbia River basin has focused on the timing of water flows and so far, despite debates about reservoir management, water scarcity has not been as prominent an issue in the Columbia basin as it has elsewhere, such as the Klamath basin.”

The study, which was funded by the National Science Foundation’s support to the H.J. Andrews Experimental Forest, looked at seven sub-basins of the Columbia River, as well as the main stem of the Columbia. These river systems included the Bruneau, Entiat, Snake, Pend Oreille, Priest, Salmon and Willamette rivers.

“One of the advantages of having a long-term research programs like H.J. Andrews is that you have detailed measurements over long periods of time that can tell you a lot about how climate is changing,” Jones pointed out. “In the case of the Columbia River – especially downstream – the impacts haven’t been as daunting as some people initially feared because of the engineering component.

“Will that be the case in the future?” she added. “It’s possible, but hard to predict. Whether we see a strong climate change signal producing water shortages in the Columbia River will depend on the interplay of social forces and climate change over the next several decades.”

Also co-author on the study is Kendra Hatcher, a graduate student in the College of Earth, Ocean, and Atmospheric Sciences, who studied under Jones.

About the OSU College of Earth, Ocean, and Atmospheric Sciences: CEOAS is internationally recognized for its faculty, research and facilities, including state-of-the-art computing infrastructure to support real-time ocean/atmosphere observation and prediction. The college is a leader in the study of the Earth as an integrated system, providing scientific understanding to address complex environmental challenges

MEDIA CONTACT:
Mark Floyd,
541-737-0788
SOURCE:
Julia Jones, 541-737-1224; jones@geo.oregonstate.edu

Julia Jones | EurekAlert!
Further information:
http://www.oregonstate.edu

More articles from Ecology, The Environment and Conservation:

nachricht Foxes in the city: citizen science helps researchers to study urban wildlife
14.12.2018 | Veterinärmedizinische Universität Wien

nachricht Machine learning helps predict worldwide plant-conservation priorities
04.12.2018 | Ohio State University

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Formed to Meet Customers’ Needs – New Laser Beams for Glass Processing

17.12.2018 | Physics and Astronomy

Preserving soil quality in the long term

17.12.2018 | Architecture and Construction

New RNA sequencing strategy provides insight into microbiomes

17.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>