Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

After dam removal, sediment muddies the water

24.10.2012
The largest dam-removal project in history has increased river water cloudiness caused by suspended particles, a process that could affect aquatic life.

The dismantling of two large dams on the Elwha River in Washington began in September of last year and has significantly increased this river cloudiness, known as turbidity, even though most of the sediment trapped behind the dams has yet to erode into the river.

"The construction of dams can cause major disruptions to natural processes on riverways, and we can expect their removal to also have anomalous effects for some time until rivers regain their equilibrium," said U.S. Geological Survey Director Marcia McNutt. "What we are learning from the response of the Elwha River ecology to increased sedimentation during dam removal will help guide other large dam removal and river restoration projects in the future."

The U.S. Geological Survey authors examined sediment and water-flow data from the first six months of dam removal and found that dam-removal activities and natural processes both affected the river's turbidity. Breaching of several temporary earthen dams built to assist with deconstruction caused sustained increases in downstream turbidity. High river flows associated with rainfall also increased turbidity, at measuring stations both above and below the dams.

"During the first six months of dam removal, most of the sediment released was silt and clay, which caused substantial-but not unexpected-turbidity in the river and coastal waters. As dam removal progresses we expect more and more sand and gravel to be released into the river, which will likely help build river bars and slow coastal erosion near the Elwha River mouth," said Jonathan Warrick, lead author of the report and research geologist for the USGS. "Although the river has been quite turbid since dam removal began, most of the sediment-transport action is yet to come."

This first published report on sediment response to the Department of Interior's Elwha River Restoration Project, is published today in Eos, the weekly newspaper of the American Geophysical Union.

High turbidity levels can reduce the amount of light penetrating river and coastal waters, which can inhibit aquatic plant growth and affect wildlife that rely on sight to find food and avoid predators.

Removal of the dams is exposing more than 24 million cubic yards of sediment stored in the reservoirs, enough to fill the Seattle Seahawks' football stadium eight times. Using a combination of measurements from a station downstream of the dams, the authors estimated that less than 1 percent of the 24 million cubic yards of sediment stored behind the dams had eroded and moved downstream.

Thus, the authors conclude that completion of dam removal in 2012- 2013 will expose much more sediment to erosion, resulting in continued turbidity downstream as well as changes in the shape and sedimentary makeup of the riverbed and the coastal landforms around the mouth of the river into the Strait of Juan de Fuca, which is only 5 miles below Elwha Dam.

"Tracking these changes will be important to assessing their effects on habitat for fish and other wildlife in what historically was one of the most productive salmon rivers in Puget Sound," Warrick said. Scientists expect dam removal to cause short-term adverse effects on aquatic life, followed by large-scale ecosystem resurgence once the river's sediment load returns to a more normal and natural state.

Dam decommissioning has become an important means for removing unsafe or obsolete dams and for restoring rivers to a more natural state. Two dams are being removed incrementally during this 2-year project: the 105-foot-high Elwha Dam impounding Lake Aldwell and the 210-foot- high Glines Canyon Dam impounding Lake Mills.

Only part of the total sediment stored behind the dams-9 to 10 million cubic yards-is expected to erode into the river and move downstream to coastal areas. The methods and schedule of dam deconstruction are largely governed by management of this sediment, with controlled drawdowns of the reservoir levels to prevent deleterious impacts of an abrupt release.

More information on the Elwha River Restoration can be found on web pages hosted by the USGS and the National Park Service. This research and monitoring was funded by both the USGS and the U.S. EPA.

Title:
"River turbidity and sediment loads during dam removal"
Authors:
Jonathan A. Warrick: Pacific Coastal and Marine Science Center, U.S. Geological Survey, Santa

Cruz, California;

Jeffrey J. Duda: Western Fisheries Research Center, U.S. Geological Survey, Seattle,

Washington;

Christopher S. Magirl and Chris A. Curran, Washington Water Science Center, U.S. Geological

Survey, Tacoma, Washington

Contact information for the authors:
Jon Warrick: Telephone: (831) 460-7569; Email: jwarrick@usgs.gov
AGU Contact:
Kate Ramsayer
+1 (202) 777-7524
kramsayer@agu.org
USGS Contact:
Paul Laustsen
+1 (650) 454-7264
plaustsen@usgs.gov

Kate Ramsayer | American Geophysical Union
Further information:
http://www.agu.org

More articles from Ecology, The Environment and Conservation:

nachricht Waste in the water – New purification techniques for healthier aquatic ecosystems
24.07.2018 | Eberhard Karls Universität Tübingen

nachricht Plenty of habitat for bears in Europe
24.07.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>