Conservation Targets Too Small to Stop Extinction

That’s according to a new study by University of Adelaide and Macquarie University scientists which has shown that populations of endangered species are unlikely to persist in the face of global climate change and habitat loss unless they number around 5000 mature individuals or more.

The findings have been published online today in a paper ‘Pragmatic population viability targets in a rapidly changing world’ in the journal Biological Conservation.

“Conservation biologists routinely underestimate or ignore the number of animals or plants required to prevent extinction,” says lead author Dr Lochran Traill, from the University of Adelaide’s Environment Institute.

“Often, they aim to maintain tens or hundreds of individuals, when thousands are actually needed. Our review found that populations smaller than about 5000 had unacceptably high extinction rates. This suggests that many targets for conservation recovery are simply too small to do much good in the long run.”

A long-standing idea in species restoration programs is the so-called ‘50/500’ rule. This states that at least 50 adults are required to avoid the damaging effects of inbreeding, and 500 to avoid extinctions due to the inability to evolve to cope with environmental change.

“Our research suggests that the 50/500 rule is at least an order of magnitude too small to effectively stave off extinction,” says Dr Traill. “This does not necessarily imply that populations smaller than 5000 are doomed. But it does highlight the challenge that small populations face in adapting to a rapidly changing world.”

Team member Professor Richard Frankham, from Macquarie University’s Department of Biological Sciences, says: “Genetic diversity within populations allows them to evolve to cope with environmental change, and genetic loss equates to fragility in the face of such changes.”

Conservation biologists worldwide are battling to prevent a mass extinction event in the face of a growing human population and its associated impact on the planet.

“The conservation management bar needs to be a lot higher,” says Dr Traill.

“However, we shouldn’t necessarily give up on critically endangered species numbering a few hundred of individuals in the wild. Acceptance that more needs to be done if we are to stop ‘managing for extinction’ should force decision makers to be more explicit about what they are aiming for, and what they are willing to trade off, when allocating conservation funds.”

Other researchers in the study are Associate Professor Corey Bradshaw and Professor Barry Brook, both from the University of Adelaide’s Environment Institute. The paper is online at http://dx.doi.org/10.1016/j.biocon.2009.09.001

Media Contact

Robyn Mills Newswise Science News

More Information:

http://www.adelaide.edu.au

All latest news from the category: Ecology, The Environment and Conservation

This complex theme deals primarily with interactions between organisms and the environmental factors that impact them, but to a greater extent between individual inanimate environmental factors.

innovations-report offers informative reports and articles on topics such as climate protection, landscape conservation, ecological systems, wildlife and nature parks and ecosystem efficiency and balance.

Back to home

Comments (0)

Write a comment

Newest articles

High-energy-density aqueous battery based on halogen multi-electron transfer

Traditional non-aqueous lithium-ion batteries have a high energy density, but their safety is compromised due to the flammable organic electrolytes they utilize. Aqueous batteries use water as the solvent for…

First-ever combined heart pump and pig kidney transplant

…gives new hope to patient with terminal illness. Surgeons at NYU Langone Health performed the first-ever combined mechanical heart pump and gene-edited pig kidney transplant surgery in a 54-year-old woman…

Biophysics: Testing how well biomarkers work

LMU researchers have developed a method to determine how reliably target proteins can be labeled using super-resolution fluorescence microscopy. Modern microscopy techniques make it possible to examine the inner workings…

Partners & Sponsors