Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate: Meat turns up the heat

22.07.2014

Eating meat contributes to climate change, due to greenhouse gasses emitted by livestock. New research finds that livestock emissions are on the rise and that beef cattle are responsible for far more greenhouse gas emissions than other types of animals. It is published by Climactic Change.

Carbon dioxide is the most-prevalent gas when it comes to climate change. It is released by vehicles, industry, and forest removal and comprises the greatest portion of greenhouse gas totals. But methane and nitrous oxide are also greenhouse gasses and account for approximately 28 percent of global warming activity.

Methane and nitrous oxide are released, in part, by livestock. Animals release methane as a result of microorganisms that are involved in their digestive processes and nitrous oxide from decomposing manure. These two gasses are responsible for a quarter of these non-carbon dioxide gas emissions and 9 percent of total greenhouse gas emissions overall.

The research team, including Dario Caro, formerly of Carnegie and now at the University of Siena in Italy, and Carnegie's Ken Caldeira, estimated the greenhouse gas emissions related to livestock in 237 countries over a nearly half a century and found that livestock emissions increased by 51 percent over this period.

They found a stark difference between livestock-related emissions in the developing world, which accounts for most of this increase, and that released by developed countries. This is expected to increase further going forward, as demand for meat, dairy products, and eggs is predicted by some scientists to double by 2050. By contrast, developed countries reached maximum livestock emissions in the 1970s and have been in decline since that time.

"The developing world is getting better at reducing greenhouse emissions caused by each animal, but this improvement is not keeping up with the increasing demand for meat," said Caro. "As a result, greenhouse gas emissions from livestock keep going up and up in much of the developing world."

Breaking it down by animal, beef and dairy cattle comprised 74 percent of livestock-related greenhouse gas emissions, 54 percent coming from beef cattle and 17 percent from dairy cattle. Part of this is due to the abundance of cows, but it is also because cattle emit greater quantities of methane and nitrous oxide than other animals. Sheep comprised 9 percent, buffalo 7 percent, pigs 5 percent, and goats 4 percent.

"That tasty hamburger is the real culprit," Caldeira said. "It might be better for the environment if we all became vegetarians, but a lot of improvement could come from eating pork or chicken instead of beef."

###

The Carnegie Institution for Science is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Ken Caldeira | Eurek Alert!

Further reports about: Caldeira Climate beef chicken countries dioxide emissions greenhouse heat meat nitrous

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling of PET Bottles: New Ideas for Resource Cycles in Germany
25.06.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes

17.07.2018 | Life Sciences

Electronic stickers to streamline large-scale 'internet of things'

17.07.2018 | Information Technology

Behavior-influencing policies are critical for mass market success of low carbon vehicles

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>