Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate impact of clouds made from airplane contrails may triple by 2050

27.06.2019

In the right conditions, airplane contrails can linger in the sky as contrail cirrus – ice clouds that can trap heat inside the Earth’s atmosphere. Their climate impact has been largely neglected in global schemes to offset aviation emissions, even though contrail cirrus have contributed more to warming the atmosphere than all CO2 emitted by aircraft since the start of aviation. A new study published in the European Geosciences Union (EGU) journal Atmospheric Chemistry and Physics has found that, due to air traffic activity, the climate impact of contrail cirrus will be even more significant in the future, tripling by 2050.

Contrail cirrus change global cloudiness, which creates an imbalance in the Earth’s radiation budget – called ‘radiative forcing’ – that results in warming of the planet.


Simulation results: radiative forcing due to the formation of contrails (caption: https://www.egu.eu/medialibrary/image/4055/simulation-results-radiative-forcing-...)

Bock and Burkhardt, Atmos. Chem. Phys., 2019

The larger this radiative forcing, the more significant the climate impact. In 2005, air traffic made up about 5% of all anthropogenic radiative forcing, with contrail cirrus being the largest contributor to aviation’s climate impact.

“It is important to recognise the significant impact of non-CO2 emissions, such as contrail cirrus, on climate and to take those effects into consideration when setting up emission trading systems or schemes like the Corsia agreement,” says Lisa Bock, a researcher at DLR, the German Aerospace Center, and lead-author of the new study.

Corsia, the UN’s scheme to offset air traffic carbon emissions from 2020, ignores the non-CO2 climate impacts of aviation.

But the new Atmospheric Chemistry and Physics study shows these non-CO2 climate impacts cannot be neglected. Bock and her colleague Ulrike Burkhardt estimate that contrail cirrus radiative forcing will be 3 times larger in 2050 than in 2006. This increase is predicted to be faster than the rise in CO2 radiative forcing since expected fuel efficiency measures will reduce CO2 emissions.

The increase in contrail cirrus radiative forcing is due to air traffic growth, expected to be 4 times larger in 2050 compared to 2006 levels, and a slight shift of flight routes to higher altitudes, which favours the formation of contrails in the tropics. The impact on climate due to contrail cirrus will be stronger over Northern America and Europe, the busiest air traffic areas on the globe, but will also significantly increase in Asia.

“Contrail cirrus’ main impact is that of warming the higher atmosphere at air traffic levels and changing natural cloudiness. How large their impact is on surface temperature and possibly on precipitation due to the cloud modifications is unclear,” says Burkhardt.

Bock adds: “There are still some uncertainties regarding the overall climate impact of contrail cirrus and in particular their impact on surface temperatures because contrail cirrus themselves and their effects on the surface are ongoing topics of research. But it’s clear they warm the atmosphere.”

Cleaner aircraft emissions would solve part of the problem highlighted in the study. Reducing the number of soot particles emitted by aircraft engines decreases the number of ice crystals in contrails, which in turn reduces the climate impact of contrail cirrus.

However, “larger reductions than the projected 50% decrease in soot number emissions are needed,” says Burkhardt. She adds that even 90% reductions would likely not be enough to limit the climate impact of contrail cirrus to 2006 levels.

Another often discussed mitigation method is rerouting flights to avoid regions particularly sensitive to the effects of contrail formation.

But Bock and Burkhardt caution about applying measures to reduce the climate impact of short-lived contrail cirrus that could result in increases in long-lived CO2 emissions, in particular given the uncertainties in estimating the climate impact of contrail cirrus.

They say that measures to reduce soot emissions would be preferable to minimise the overall radiative forcing of future air traffic since they do not involve an increase of CO2 emissions.

“This would enable international aviation to effectively support measures to achieve the Paris climate goals,” Burkhardt concludes.

# # #

Please mention the name of the publication (Atmospheric Chemistry and Physics) if reporting on this story and, if reporting online, include a link to the paper (https://www.atmos-chem-phys.net/19/8163/2019/) or to the journal website (https://www.atmospheric-chemistry-and-physics.net/).

MORE INFORMATION
This research is presented in the paper ‘Contrail cirrus radiative forcing for future air traffic’ to appear in the EGU open access journal Atmospheric Chemistry and Physics on 27 June 2019.

The study was conducted by Lisa Bock and Ulrike Burkhardt (Institute of Atmospheric Physics, DLR).

Citation: Bock, L. and Burkhardt, U.: Contrail cirrus radiative forcing for future air traffic, Atmos. Chem. Phys., 19, 8163-8174, https://doi.org/10.5194/acp-19-8163-2019, 2019

The scientific article is available online, free of charge, from the publication date onwards, at https://www.atmos-chem-phys.net/19/8163/2019/ (this URL will redirect to the final, peer-reviewed paper after the embargo lifts). ***A pre-print version of the final paper is available for download from the Media section at https://www.egu.eu/news/493/climate-impact-of-clouds-made-from-airplane-contrail.... NB.: the URL and doi on the preprint are not those of the final paper. Please use the doi and URL provided here.***

The European Geosciences Union (EGU, https://www.egu.eu) is the leading organisation for Earth, planetary and space science research in Europe. With our partner organisations worldwide, we foster fundamental geoscience research, alongside applied research that addresses key societal and environmental challenges. Our vision is to realise a sustainable and just future for humanity and for the planet. We publish a number of diverse scientific journals, which use an innovative open access format, and organise topical meetings, and education and outreach activities. The annual EGU General Assembly is the largest and most prominent European geosciences event, attracting over 16,000 scientists from all over the world in 2019. The meeting’s sessions cover a wide range of topics, including volcanology, planetary exploration, the Earth’s internal structure and atmosphere, climate, as well as energy and resources. The EGU General Assembly 2020 is taking in Vienna, Austria, from 3 to 8 May 2019. For more information and press registration, please check https://www.egu.eu/gamedia closer to the time of the event, or follow the EGU on Twitter (@EuroGeosciences) and Facebook (European Geosciences Union).

If you wish to receive our press releases via email, please use the Press Release Subscription Form at http://www.egu.eu/news/subscribe/. Subscribed journalists and other members of the media receive EGU press releases under embargo (if applicable) at least 24 hours in advance of public dissemination.

Atmospheric Chemistry and Physics (ACP, https://www.atmospheric-chemistry-and-physics.net/) is an international scientific journal dedicated to the publication and public discussion of high-quality studies investigating the Earth’s atmosphere and the underlying chemical and physical processes. It covers the altitude range from the land and ocean surface up to the turbopause, including the troposphere, stratosphere, and mesosphere.

Wissenschaftliche Ansprechpartner:

Scientists
Ulrike Burkhardt
Researcher, Institute of Atmospheric Physics, DLR
Oberpfaffenhofen-Wessling, Germany
Phone: +49 8153 28-2561
Email: Ulrike.burkhardt@dlr.de
Languages: German, English

Lisa Bock
Researcher, Institute of Atmospheric Physics, DLR
Oberpfaffenhofen-Wessling, Germany
Phone: +49 8153 28-1516
Email: lisa.bock@dlr.de
Languages: German, English

Press officer
Bárbara Ferreira
EGU Media and Communications Manager
Munich, Germany
Email: media@egu.eu
EGU on Twitter: @EuroGeosciences

Originalpublikation:

Citation: Bock, L. and Burkhardt, U.: Contrail cirrus radiative forcing for future air traffic, Atmos. Chem. Phys., 19, 8163-8174, https://doi.org/10.5194/acp-19-8163-2019, 2019

The scientific article will be available online at https://www.atmos-chem-phys.net/19/8163/2019/ (this URL will redirect to the final, peer-reviewed paper after the embargo lifts). ***A pre-print version of the final paper is available for download from the Media section at https://www.egu.eu/news/493/climate-impact-of-clouds-made-from-airplane-contrail.... NB.: the URL and doi on the preprint are not those of the final paper. Please use the doi and URL provided here.***

Weitere Informationen:

http://www.atmos-chem-phys.net/19/8163/2019/ – Scientific study (the link will be active after the study is published on 27 June 14:00 CEST; embargoed preprint available in the Media section at https://www.egu.eu/news/493/climate-impact-of-clouds-made-from-airplane-contrail...)
http://www.atmospheric-chemistry-and-physics.net/ – Journal: Atmospheric Chemistry and Physics

Dr. Bárbara Ferreira EGU Executive Office | European Geosciences Union

More articles from Ecology, The Environment and Conservation:

nachricht Typhoons and marine eutrophication are probably the missing source of organic nitrogen in ecosystems
15.11.2019 | Institute of Atmospheric Physics, Chinese Academy of Sciences

nachricht Rethinking the science of plastic recycling
24.10.2019 | DOE/Argonne National Laboratory

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

Structure of a mitochondrial ATP synthase

19.11.2019 | Life Sciences

The measurements of the expansion of the universe don't add up

19.11.2019 | Physics and Astronomy

Ayahuasca compound changes brainwaves to vivid 'waking-dream' state

19.11.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>