Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate Clues in the Southern Ocean - Ocean currents surprisingly resistant to intensifying winds

24.11.2008
The Antarctic Circumpolar Current is the current system with the largest volume transport in the world ocean. Between 40° and 60°S strong westerlies move about 140 million cubic meters of water per second around the Antarctic continent (this is about five times the transport of the Gulf Stream).

Vertical motions associated with this current have been responsible for transporting a substantial fraction of the anthropogenic carbon dioxide emissions from the atmosphere to the deep ocean, thereby effectively damping the rate of global warming.

Investigations in this key region of the world ocean have been hampered by a sparse database due to the logistical challenges for ship based expeditions in the high-latitude Southern Ocean.

“In our study we used data obtained by the international Argo Programme”, explains Prof. Claus Böning from the Leibniz Institute of Marine Sciences (IFM-GEOMAR) in Kiel, Germany. Argo is a system of currently 3000 autonomous free-floating robotic systems which are surveying the world ocean. Every 10 days these buoys measure temperature and salinity profiles over the upper 2000 meters. These measurements are transmitted to land stations via satellite. “For this study about 52,000 profiles of more than 600 Argo-drifters in the Southern Ocean were used and compared with historic ship measurements”, explains oceanographer Astrid Dispert from IFM-GEOMAR. For this analysis the extensive archives of the Australian marine research centre in Hobart, Tasmania were also used.

As expected, the observations in the subpolar ocean demonstrate an increase of water temperature and a decrease in salinity at the same time. Nevertheless, in contradiction to the simulations of various climate models the data show no significant changes in water transport. “Our results point to one important thing: Eddies which are currently not resolved in climate models might be the key process in controlling the transport of the ACC”, Prof. Böning explains. Hence, his conclusion is that investigations with high-resolution ocean models are required to test this hypothesis. “Of course, besides the simulations we also need further observations”, adds Prof. Martin Visbeck (IFM-GEOMAR). “Thanks to the international Argo observations programme we now have continuously access to data from a worldwide network of more than 3000 profiling-drifters. This is a quantum leap in the field of ocean observations, which, together with high resolution modelling gives us new insights about long-term changes in the ocean.“

Further investigations have to show whether the results are robust. If confirmed, this would in one way be good news: Until now the Southern Ocean is the biggest oceanic sink for anthropogenic carbon dioxide and therefore a crucial regulator for the atmospheric carbon dioxide concentration. Climate models predicted a severe reduction in the southern ocean carbon dioxide uptake due to wind-forced changes in the current fields. Now high-resolution models are needed to assess the role of the hitherto unresolved ocean eddies in the Southern Ocean’s response to the progressive changes in the atmospheric conditions.

Scientific Paper:
Böning, C.W., A. Dispert, M. Visbeck, S. Rintoul and F.U. Schwarzkopf, 2008: The response of the Antarctic Circumpolar Current to recent climate change. Nature Geoscience, doi: 10.1038/ngeo362, advanced online publication.
Contact:
Prof. Dr. Claus Böning, Tel. +49-431 – 600 4003, cboening@ifm-geomar.de
Dr. Andreas Villwock (Public relations), Tel. +49-431 – 600 2802, avillwock@ifm-geomar.de

Andreas Villwock | alfa
Further information:
http://www.ifm-geomar.de

More articles from Ecology, The Environment and Conservation:

nachricht Sinking groundwater levels threaten the vitality of riverine ecosystems
04.10.2019 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Protecting our climate, the environment and nature is the focus of a new communications project
04.10.2019 | IDEA TV

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Analysis of Galileo's Jupiter entry probe reveals gaps in heat shield modeling

17.10.2019 | Physics and Astronomy

Creating miracles with polymeric fibers

17.10.2019 | Physics and Astronomy

Synthetic cells make long-distance calls

17.10.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>