Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate Change Projected to Alter Indiana Bat Maternity Range

29.01.2013
Research by U.S. Forest Service scientists forecasts profound changes over the next 50 years in the summer range of the endangered Indiana bat.

In an article published in the journal Ecology and Evolution, Forest Service Southern Research Station researchers Susan Loeb and Eric Winters discuss the findings of one of the first studies designed to forecast the responses of a temperate zone bat species to climate change.

The researchers modeled the current maternity distribution of Indiana bats and then modeled future distributions based on four different climate change scenarios. “We found that due to projected changes in temperature, the most suitable summer range for Indiana bats would decline and become concentrated in the northeastern United States and the Appalachian Mountains,” says SRS research ecologist Loeb.

“The western part of the range (Missouri, Iowa, Illinois, Kentucky, Indiana, and Ohio)—currently considered the heart of Indiana bat maternity range—would become unsuitable under most climates that we modeled. This has important implications for managers in the Northeast and the Appalachian Mountains as these areas will most likely serve as climatic refuges for these animals when other parts of the range become too warm.”

In general, bat species in temperate zones such as Indiana bats may be more sensitive than many other groups of mammals to climate change because their reproductive cycles, hibernation patterns, and migration are closely tied to temperature. Indiana bat populations were in decline for decades due to multiple factors, including the destruction of winter hibernation sites and loss of summer maternity habitat.

Due to conservation efforts, researchers saw an increase in Indiana bat populations in 2000 to 2005, but with the onset of white-nose syndrome populations are declining again, with the number of Indiana bats reported hibernating in the northeastern United States down by 72 percent in 2011. The study predicts even more declines due to temperature rises from climate change, with much of the western portion of the current range forecast to be unsuitable for maternity habitat by 2060.

“Our model suggests that once average summer (May through August) maximum temperatures reach 27.4°C (81.3°F), the climatic suitability of the area for Indiana bat maternity colonies declines,” says Loeb. “Once they reach 29.9°C (85.8°F), the area is forecast to become completely unsuitable. Initially, Indiana bat maternity colonies may respond to warming temperatures by choosing roosts that have more shade than the roosts that they currently use. Eventually, it is likely that they will have to find more suitable climates.”

The models the researchers produced provide resource managers guidance on areas that are likely to contain maternity colonies now and in the future, depending on the availability of suitable habitat in those areas. “Managers in the western parts of the range should be aware of the potential changes in summer distributions due to climate change and not assume that declines are due to habitat loss or degradation,” says Loeb. “Management actions that foster high reproductive success and survival will be critical for the conservation and recovery of the species.”

Access the full text of the article: http://onlinelibrary.wiley.com/doi/10.1002/ece3.440/abstract

Susan Loeb | EurekAlert!
Further information:
http://www.fs.fed.us

More articles from Ecology, The Environment and Conservation:

nachricht Waste in the water – New purification techniques for healthier aquatic ecosystems
24.07.2018 | Eberhard Karls Universität Tübingen

nachricht Plenty of habitat for bears in Europe
24.07.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

Tiny Helpers that Clean Cells

14.08.2018 | Life Sciences

Algorithm provides early warning system for tracking groundwater contamination

14.08.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>