Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate-change-induced wildfires may alter Yellowstone forests

26.07.2011
Climate change in the Greater Yellowstone Ecosystem will increase the frequency of wildfires and alter the composition of the forests by 2050, according to a team of ecologists who modeled the effects of higher temperatures on fire occurrence.

"We are following the long-term effects of fire in the Yellowstone area and encountering some lessons and surprises that challenge the way we think about fire in the area," said Erica A. H. Smithwick, assistant professor of geography and ecology, Penn State, and principle investigator on the project. "Yellowstone National Park is the first national park in the world and is now a wonderful natural laboratory for studying natural processes."

The Greater Yellowstone Ecosystem is centered around Yellowstone National Park but encompasses about 20 million acres in Wyoming, Montana and Idaho and includes Grand Teton National Park, many national forests and a small amount of private land. The forests in this area are predominantly lodgepole pine but also include Douglas fir, Ponderosa pine, whitebark pine, spruce-fir and aspen.

Using historic records of fires in the Yellowstone area and coupling that information with a number of existing climate models, the researchers report today (July 25) in the Proceedings of the National Academy of Sciences that the climate-linked fire system is a tipping element that may change the flora, fauna and ecosystem quality in this landscape and could point to similar changes in other subalpine or boreal forests.

Historically, fires occur in the lodgepole forests in the Yellowstone area about once every 100 to 300 years. These fires are 'stand replacing fires' because the entire forest is destroyed by fire and then regrows. Unlike areas of the southwest where understory brush and organic material increases the chance of major fires, fire in this area is mostly dependent on temperature, relative humidity and drought conditions.

Unlike other coniferous trees, lodgepole pine create pinecones very slowly and the cones stay on the trees. On some trees, the cones require the heat of a fire to open and release their seeds.

"The vegetation really needs about 90 years to fully recover," said Smithwick, "although there would probably be some cones at 15 years and more at 30 and 60 years. We need to know more about the forest's capacity to recover rapidly under frequent fire conditions."

Historically, large fire years were associated with moderate -- 2 degrees Fahrenheit -- changes in temperature, but changes in future temperatures are expected to exceed these values on a regular basis. The rate of fires is already increasing in the western U.S. Using the historical fire-climate relationships between 1972 and 1999 as a guide, the three global climate models provided consistent results through the year 2099.

The researchers found that "warmer-than-average temperatures were a necessary but not sufficient condition for predicting extreme fire years" but that moisture deficit and summer precipitation were also important. Although the variability of day-to-day winds is not included in the models, they too would play a part in fire frequency and size.

"What surprised us about our results was the speed and scale of the projected changes in fire in Greater Yellowstone," said Anthony Westerling, professor of environmental engineering and geography, University of California, Merced. "We expected fire to increase with increased temperatures, but we did not expect it to increase so much or so quickly. We were also surprised by how consistent the changes were across different climate projections."

In the simulations, years with no major fires, which are common historically, became rare approaching 2050 and almost non-existent between 2050 and 2099. Between 2005 and 2034 the fire interval drops below 30 years in parts of the landscape, and by 2099 climatic condition are such that fire is the norm.

Of course with a more frequent fire regime, there could be insufficient fuel for fires to persist.

"In these model we don't consider what the vegetation will do under these changing regimes," said Smithwick. "The forest has been stable for thousands of years, but it looks like it will face changes by 2050."

These changes would also alter the fire regime because some areas might become more permanent grasslands or forests of other trees, such as Ponderosa pine, might emerge. Long before the fire regimebecomes more frequent, the vegetation and possibly the animals in the area may have to adapt to severe fire events.

Smithwick is not suggesting that fire policy in Yellowstone should shift, and she is certain that the park with its geysers and mud pots will still remain, but climate change will bring changes to the forests and perhaps to the human and animal uses of the park.

"The lodgepole pine has surprised us over and over, so maybe it will be resilient enough to persist," she said.

Also participating in this research were Monica Turner, Eugene P. Odum Professor of ecology, University of Wisconsin; Madison, Michael G. Ryan, research ecologist, U.S. Forest Service; and William H. Romme, professor emeritus, Colorado State University.

The Joint Fire Science Program, U.S. Forest Service Southern Research Station Joint Venture Agreement and the National Oceanic and Atmospheric Administration supported this work.

A'ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

Further reports about: Forest Service Ponderosa Yellowstone boreal forest ecosystem lodgepole pine

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling of PET Bottles: New Ideas for Resource Cycles in Germany
25.06.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>