Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cleaning waste water effectively

30.05.2017

Water is vital – therefore, waste water has to be cleaned as efficiently as possible. Ceramic membranes make this possible. Researchers from the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Hermsdorf, Germany were able to significantly reduce the separation limits of these membranes and to reliably filter off dissolved organic molecules with a molar mass of only 200 Dalton. Even industrial sewage water can thus be cleaned efficiently.

Anyone who has dragged himself along a sunny coastal path at the height of summer with too little water in his bag knows all too well: without water, we cannot make it too long. Water is one of the foundations of life. In industry water is a must, as well: in many production processes, it serves as a solvent, detergent, to cool or to transfer heat.


© Photo Fraunhofer IKTS

Ceramic membranes by the Fraunhofer Institute for Ceramic Technologies and Systems IKTS.

As more and more water is consumed, waste water has to be treated and reused. Ceramic membranes offer a good way to do this: since they are separated mechanically – similar to a coffee filter – they are particularly energy-efficient. However, this method reviously came to an end when a molecular size of 450 Daltons was reached: smaller molecules could not be separated with ceramic membranes. According to experts, it was even considered impossible to go below this limit.

For the first time, molecules as small as 200 Daltons can be separated

Dr. Ingolf Voigt, Dr.-Ing. Hannes Richter and Dipl.-Chem. Petra Puhlfuerss from the Fraunhofer IKTS have achieved the impossible. "With our ceramic membranes, we achieve, for the first time, a molecular separation limit of 200 Daltons – and, thereby, a whole new quality," says Voigt, Deputy Institute Director of the IKTS and Site Manager in Hermsdorf.

But how did the researchers manage to do this? On the way to making the impossible possible, it was first necessary to overcome various obstacles. The first was in the production of the membrane itself: if such small molecules were to be separated reliably, a membrane was needed that had pores smaller than the molecules which were to be separated.

In addition, all of the pores had to be as similar in size as possible, since a single larger opening is sufficient to allow molecules to slip through. The challenge was therefore to produce pores which were as small as possible, with all of them having more or less the same size. "We achieved these results by refining sol-gel technology says Richter, Head of Department at the IKTS. The second hurdle was to make such membrane layers defect-free over larger surfaces.

The Fraunhofer researchers have succeeded in doing this, as well. "Whereas only a few square centimeters of surface are usually coated, we equipped a pilot system with a membrane area of 234 square meters, which means that our membrane is several magnitudes larger," explains Puhlfuerss, scientist at the IKTS.

Transfer from the laboratory into practice

Commissioned by Shell, the pilot system was built by the company Andreas Junghans – Anlagenbau und Edelstahlbearbeitung GmbH & Co. KG in Frankenberg, Germany and is located in Alberta, Canada. The system has been successfully purifying waste water since 2016, which is used for the extraction of oil from oil sand. The researchers are currently planning an initial production facility with a membrane area of more than 5,000 square meters.

The innovative ceramic membranes also offer advantages in industrial production processes: they can be used to purify partial currents directly in the process as well as to guide the cleaned water in the cycle, which saves water and energy.

For the development of the ceramic nanofiltration membrane, Dr. Ingolf Voigt, Dr.-Ing. Hannes Richter and Dipl.-Chem. Petra Puhlfuerss have received this year’s Joseph-von-Fraunhofer award. The jury justifies the award by mentioning, among other things "the first-ever implementation for filtration applications within this material class."

Weitere Informationen:

https://www.ikts.fraunhofer.de/en/press_media/press_releases/17_05_cleaning_wast...

Dipl.-Chem. Katrin Schwarz | Fraunhofer-Institut für Keramische Technologien und Systeme IKTS

More articles from Ecology, The Environment and Conservation:

nachricht From the Arctic to the tropics: researchers present a unique database on Earth’s vegetation
20.11.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Fading stripes in Southeast Asia: First insight into the ecology of an elusive and threatened rabbit
20.11.2018 | Forschungsverbund Berlin e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First diode for magnetic fields

Innsbruck quantum physicists have constructed a diode for magnetic fields and then tested it in the laboratory. The device, developed by the research groups led by the theorist Oriol Romero-Isart and the experimental physicist Gerhard Kirchmair, could open up a number of new applications.

Electric diodes are essential electronic components that conduct electricity in one direction but prevent conduction in the opposite one. They are found at the...

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Removing toxic mercury from contaminated water

21.11.2018 | Life Sciences

New China and US studies back use of pulse oximeters for assessing blood pressure

21.11.2018 | Medical Engineering

Exoplanet stepping stones

21.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>