Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cleaning heavily polluted water at a fraction of the cost

30.10.2008
Eureka project E!2962 Euroenviron Biosorb-Tox has succeeded in developing a water treatment system for industrial oil polluted water at a tenth of the cost of other commercially available tertiary treatments, leaving water so clean it can be pumped safely back out to sea without endangering flora or fauna.

Wastewater from ships, oil refineries and other petrochemical industries is heavily contaminated with toxic compounds. Stringent EU regulations apply to its treatment and discharge since, if left untreated, these compounds are hazardous to our health, our coastlines and deadly to all forms of aquatic life when released into our waterways.

The most complete method of treating petrochemically polluted waste water is through a series of three stages involving physicochemical and biological processes. It is the third and final stage of the treatment that renders the water clean enough to be discharged into the sea. The process is complex, requiring a combination of bioreactor, chemical coagulation, granulated activated carbon or sorption technologies.

This tertiary stage is the most expensive part of the treatment. It can also cause fouling, the growth of undesirable bacteria and problems with the waste disposal of toxic sludge produced in the process, if it isn’t properly monitored.

“The cost of tertiary treatment is a big problem,” says Professor Viktoras Racys at the Kaunas University of Technology in Lithuania – the main project partner. “You can treat petrochemically polluted water effectively, but it costs a lot. We set out to find a stable process which was as cheap as possible.”

New solutions

The research group at the university’s environmental engineering department
had already developed and tested a new wastewater treatment model on a laboratory scale. “In order to apply our water treatment to large industrial practices we needed financial assistance from external sources. The Eureka partnership helped in doing this,” says Professor Racys.

Together with three partners, the project team came up with an ultra-efficient combination on an industrial scale. “We developed the treatment using three processes in one piece of equipment, a reactor,” explains Professor Racys. “We use sorption, bio-degradation and filtration. The pollutants are degraded by micro-organisms created within the reactor,” he says.

Teamwork

The project partners, all renowned experts in their field, came together from Sweden and Lithuania. The Environmental Chemistry Department of the University of Umeaa in Sweden specialises in the study of environmental problems caused by organic pollutants. Equipped with a cutting edge research laboratory, it provided the analysis and identification of the organic compounds contained in wastewater polluted with petrochemical products, using the latest technology. The department also developed procedures to evaluate these compounds and their degradation, and analyse the composition and toxicity of the sludge produced by the system.

A Swedish high-technology SME, Exposmeter, developed an in-line sampling and monitoring tool to measure the system’s efficiency in treating toxic compounds. It carried out full-scale tests on the operation of the equipment and validated the methods used, providing a set of standard operating procedures.

The design, manufacture and installation of the reactor was carried out by Dinaitas, a Lithuanian SME specialising in wastewater treatment plants and technologies. Dinaitas also took on the maintenance of the entire system once it was operational.

Astounding results

The system is already up and running, treating petrochemically polluted wastewater at Lithuanian oil company, Nasta. “It works great,” says Professor Racys. “We couldn’t believe the results the first time. It has a high capacity, processing 160 m3 per hour. The cost is 1 euro for every 3.5 litres. Effectively it’s 10 or 20 times better than what else is available.”

But that’s not the end of it. The purity of the end water is greatly enhanced. “The water before the treatment is highly polluted, containing 1 gram of pollutant per litre. After treatment it contains only 0.1 gram of pollutant per litre. This surpasses the EU standards and the water can be put straight back into the sea,” says Professor Racys.

After two years of daily operation, the system has proved to be stable and has spawned several academic publications. It is ready to use in sensitive environmental regions, for the treatment of oil production and refinery wastewater, ballast water, the run-off from car washes and car parks and any petroleum polluted wastewaters containing both legally regulated compounds and the most toxic or persistent compounds.

Professor Racys thinks the reactor can be improved and would like to take the work further forward at an industrial level. “I’m very much involved with it, as with most scientists, my work is like my child,” he says. He is looking for new industrial partners, however, with operating results already as good as these, they are proving hard to find.

Shar McKenzie | alfa
Further information:
http://www.eureka.be/biosorb-tox

More articles from Ecology, The Environment and Conservation:

nachricht Despite government claims, orangutan populations have not increased. Call for better monitoring
06.11.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Increasing frequency of ocean storms could alter kelp forest ecosystems
30.10.2018 | University of Virginia

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Epoxy compound gets a graphene bump

14.11.2018 | Materials Sciences

Microgel powder fights infection and helps wounds heal

14.11.2018 | Health and Medicine

How algae and carbon fibers could sustainably reduce the athmospheric carbon dioxide concentration

14.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>