Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cities can reduce greenhouse gas emissions by 70 percent, says U of T researcher

13.02.2013
Cities around the world can significantly reduce greenhouse gas (GHG) emissions by implementing aggressive but practical policy changes, says a new study by University of Toronto Civil Engineering Professor Chris Kennedy and World Bank climate change specialist Lorraine Sugar, one of Kennedy's former students.

Kennedy and Sugar make the claim in 'A low carbon infrastructure plan for Toronto, Canada,' published in the latest issue of The Canadian Journal of Civil Engineering. The paper aims to show how cities can make a positive difference using realistic, achievable steps. Their research shows that it is technically possible for cities to reduce their greenhouse gas emissions by 70 per cent or more in the long-term.

"This is the sort of reduction the international community is calling for, so we can avoid the potentially serious consequences of climate change," said Professor Kennedy.

They note that more than half of the world's population lives in urban areas and over 70 per cent of global greenhouse gas emissions can be attributed to cities. "Cities are where people live, where economic activity flourishes," said Sugar. "Cities are where local actions can have global impact."

The study focuses on buildings, energy supply and transportation. Best practices as well as options and opportunities – for example, encouraging electric cars and increasing bicycling infrastructure – are detailed.

"It is possible for a Canadian city, in this case Toronto, to reduce its GHG emissions by the sort of magnitudes that the international scientific community have indicated are necessary globally to keep global temperature rise below 2 C," Kennedy and Sugar write.

"With current policies, especially cleaning of the electricity grid, Toronto's per-capita GHG emissions could be reduced by 30 per cent over the next 20 years. To go further, however, reducing emissions in the order of 70 per cent, would require significant retrofitting of the building stock, utilization of renewable heating and cooling systems, and the complete proliferation of electric, or other low carbon, automobiles."

The biggest obstacle is the city's building stock, according to Kennedy. Buildings have a lifespan measured in decades, so it takes time to replace older buildings with more energy-efficient ones.

The study arose out of a handbook Kennedy and his students produced for the Toronto and Region Conservation Authority in 2010, Getting to Carbon Neutral: A Guide for Canadian Municipalities. In the current paper, he and Sugar wanted to demonstrate how cities could achieve measurable results by adopting the policies outlined in the guide.

Kennedy, author of The Evolution of Great World Cities: Urban Wealth and Economic Growth (2011), teaches a course on the design of infrastructure for sustainable cities. He has consulted for the World Bank, the United Nations and the OECD on urban environment issues.

Terry Lavender | EurekAlert!
Further information:
http://www.utoronto.ca

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling of PET Bottles: New Ideas for Resource Cycles in Germany
25.06.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>