Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blue crab research may help Chesapeake Bay watermen improve soft shell harvest

25.01.2011
Genome-based technique helps identify a virus lethal to blue crab

A research effort designed to prevent the introduction of viruses to blue crabs in a research hatchery could end up helping Chesapeake Bay watermen improve their bottom line by reducing the number of soft shell crabs perishing before reaching the market.

The findings, published in the journal Diseases of Aquatic Organisms, shows that the transmission of a crab-specific virus in diseased and dying crabs likely occurs after the pre-molt (or 'peeler') crabs are removed from the wild and placed in soft-shell production facilities.

Crab mortality in soft shell production facilities is common, where it is typical for a quarter of all crabs to perish. Scientists attribute this high loss to the pressures crabs face as they are harvested, handled and placed in the facilities. When combined with the large number of animals living in a confined area, the potential for infectious diseases to spread among the crabs increases.

The team, led by University of Maryland Center for Environmental Science (UMCES) researchers, developed an innovative way to identify this crab virus solely by isolating its genetic material. Local watermen working in the soft-shell industry provided crabs to the Baltimore-based Institute of Marine and Environmental Technology (IMET) for examination.

In the laboratory, the researchers investigated the possible role of viruses in the soft shell crab's mortality by exploiting the unique physicochemical properties of the virus genome, which consists of double stranded RNA (distinct from the double stranded DNA that makes up crab and human genomes). They first extracted nucleic acids from potentially infected crabs then enriched virus genomes, allowing them to more easily find the virus. Once identified by its genome, the reo-like virus was later visualized by microscopy by collaborators at the NOAA Oxford lab.

"The molecular tools we developed during this study allow us to rapidly quantify prevalence of the blue crab reo-like virus in captive and wild crabs," said UMCES@IMET scientist Dr. Eric Schott. "The research shows that the virus was present in more than half of the dead or dying soft shell crabs we examined, but in fewer than five percent of healthy crabs."

"This new information opens the door to identifying the exact practices that help crab diseases spread," adds Schott. "That knowledge will allow us to work with watermen to develop new ways to prevent the spread of the virus, allowing them to bring more soft shells to market."

"Crab for crab, each soft shell crab we can get to market significantly increases our bottom line," said Lee Carrion of Coveside Crabs in Dundalk, Maryland. "With soft shells selling for five times the price of a hard shells, we have the potential to improve our profitability without increasing our total catch."

Throughout their research, scientists worked with watermen from Coveside Crabs to gather and collect samples for the study. Thanks to funding from the Maryland Department of Natural Resources, the team plans to continue the project this summer in an effort to proactively identify crabs carrying the virus, which poses no threat to humans, before they are brought into the soft shell production facility.

The article, "Physicochemical properties of double-stranded RNA used to discover a reo-like virus from blue crab Callinectes sapidus" appears in volume 93 of Diseases of Aquatic Organisms. In addition to Dr. Schott, UMCES researchers Drs. Holly Bowers and Rosemary Jagus, and University of Maryland graduate student Ammar Hanif contributed to this work. This research was supported by the National Oceanic and Atmospheric Administration and the Maryland Sea Grant College. Student support was provided by NOAA's Living Marine Resources Cooperative Science Center.

The University of Maryland Center for Environmental Science is the University System of Maryland's environmental research institution. UMCES researchers are helping improve our scientific understanding of Maryland, the region and the world through five research centers – Chesapeake Biological Laboratory in Solomons, Appalachian Laboratory in Frostburg, Horn Point Laboratory in Cambridge, Institute of Marine and Environmental Technology in Baltimore, and the Maryland Sea Grant College in College Park.

Christopher Conner | EurekAlert!
Further information:
http://www.umces.edu

More articles from Ecology, The Environment and Conservation:

nachricht Waste in the water – New purification techniques for healthier aquatic ecosystems
24.07.2018 | Eberhard Karls Universität Tübingen

nachricht Plenty of habitat for bears in Europe
24.07.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>