Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Black carbon found in the Amazon River reveals recent forest burnings

20.11.2019

International study quantified and characterized charcoal and soot produced by incomplete burning of trees and transported by river to the Atlantic.

Besides swathes of destroyed vegetation, forest fires in Amazonia leave their imprint on the Amazon River and its tributaries. Incomplete burning of trees results in the production of black carbon, solid particles that enter the waters of the Amazon in the form of charcoal and soot and are transported to the Atlantic Ocean as dissolved organic carbon.


International study quantified and characterized charcoal and soot produced by incomplete burning of trees and transported by river to the Atlantic

Léo Ramos Chaves - Revista Pesquisa FAPESP

For the first time, an international group of researchers have quantified and characterized the black carbon flowing in the Amazon River. Their findings, published in Nature Communications, show that most of the black carbon transported to the ocean is "young" and probably results from recent forest fires.

"By radiometric dating [a method that quantifies the amount of carbon-14 or other naturally occurring radioactive isotopes present in material based on their known rate of decay to determine the material's age to about 60,000 years ago] and molecular composition analysis, we concluded that most of the black carbon we found in the Amazon River was produced in recent years by the burning of trees," said Jeffrey E. Richey, a professor at the University of Washington in the United States and a coauthor of the study.

As a visiting researcher at the University of São Paulo's Center for Nuclear Energy in Agriculture (CENA-USP), in the past five years, Richey has conducted a project supported by São Paulo Research Foundation - FAPESP under the auspices of its São Paulo Excellence Chair (SPEC) program, with the aim of elucidating the role of the Amazon River basin in the global carbon cycle.

In November 2015, during one of the driest seasons in the region, the researchers who worked on the project collected samples of black carbon dissolved in the main channel of the Amazon and in four tributaries - the Negro, Madeira, Trombetas and Tapajós.

This period was chosen for execution of the study because water levels were low and connectivity between the Amazon and its floodplain was limited. "As a result, we were able to obtain samples only of permanent water and more accurately identify the sources of black carbon in the river basin," Richey said.

Molecular markers

Carbon-14 levels and contents in samples were measured using molecular markers, such as the polycarboxylic acid released by oxidation of aromatic polycyclical hydrocarbons in black carbon.

Quantitative measurement of the markers was combined with molecular characterization of the samples using ultra-high-resolution mass spectrometry.

The results of the analyses showed that the black carbon dissolved in the Amazon and its tributaries is generally "young" but ages as it proceeds toward the ocean.

Samples collected in localities relatively distant from the Atlantic, such as Óbidos in Pará State, were younger, while those collected farther downstream were older.

"This suggests the black carbon may age as it moves from dry land to the river and then flows on to the sea. Also, more reactive components may be removed during the transportation of this material," Richey said.

"The more recent material may be submitted to a process of mineralization in the river as it flows to the sea. This could cause a change in its molecular profile so that it emits an 'older' signal. There are still various aspects of the storage and transportation of this material from dry land to rivers and then the ocean that we need to understand better."

In a new project, also supported by FAPESP, the researchers plan to perform a larger number of measurements for comparison with the data for 2015 in an effort to find out whether the production of "young" black carbon and hence the frequency of forest fires have increased in recent years.

"Concern about the recent burnings in Amazonia is particularly acute with regard to the carbon generated. Part of it goes into the atmosphere in the form of carbon dioxide, but a large proportion is retained in the soil or water in the form of black carbon," Richey said.

Largest source of organic matter

According to the researchers, the Amazon River accounts for one-fifth of global freshwater discharge to the oceans and is the largest single source of seaborne terrestrial organic matter, "exporting" between 22 and 27 million metric tons of dissolved organic carbon per year on average. For this reason, it is a crucial system through which to understand the cycling and transportation of black carbon, the most stable carbon compound in nature.

A large and refractory component of the global carbon cycle, black carbon in particulate form acts as a biospheric carbon sink by removing carbon from faster atmosphere-biosphere processes and storing it in sedimentary reservoirs. Knowledge of the origin, dynamics and fate of this material is essential to the development of models for predicting how the global carbon cycle may interact with climate change, Richey stressed.

"Our understanding of the role of black carbon at the regional and global scales is inadequate, owing largely to limited knowledge of the processing, quality and fate of dissolved black carbon during its exportation by rivers to the ocean," he said.

"For example, we need to know how long the black carbon produced by recent forest fires takes to reach the Amazon River."

Media Contact

Joao Carlos Silva
jsilva@fapesp.br
55-113-838-4381

 @AgencyFAPESP

http://www.fapesp.br 

Joao Carlos Silva | EurekAlert!

More articles from Ecology, The Environment and Conservation:

nachricht Lights on fishing nets save turtles and dolphins
06.12.2019 | University of Exeter

nachricht For some corals, meals can come with a side of microplastics
04.12.2019 | University of Washington

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electronic map reveals 'rules of the road' in superconductor

Band structure map exposes iron selenide's enigmatic electronic signature

Using a clever technique that causes unruly crystals of iron selenide to snap into alignment, Rice University physicists have drawn a detailed map that reveals...

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

Im Focus: McMaster researcher warns plastic pollution in Great Lakes growing concern to ecosystem

Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.

In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

The Arctic atmosphere - a gathering place for dust?

09.12.2019 | Earth Sciences

New ultra-miniaturized scope less invasive, produces higher quality images

09.12.2019 | Information Technology

Discovery of genes involved in the biosynthesis of antidepressant

09.12.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>