Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Biodegradability of microcapsules


In many areas of life, petroleum-based plastics are being replaced with biobased and biodegradable plastics. This also applies to microcapsules, which are used, for example, to encapsulate fragrances in detergents or cosmetics. Although the biobased plastics are produced from renewable raw materials and supposed to be biodegradable per se, they often have to be chemically modified in order to improve materials’ durability, for example. But to what extent are these modified biobased microcapsules still biodegradable? A team of researchers at the Fraunhofer Institute for Applied Polymer Research IAP is focusing on this question.

Natural substances are inherently biodegradable. They are undergoing a natural decomposition process in which organic matter is broken down by enzymes of microorganisms living in the soil. However, if natural substances are chemically modified, this can have a negative effect on their biodegradability.

With the help of a test system, the oxygen demand during biodegradation in fresh water, seawater or soil can be determined for a wide variety of samples.

© Fraunhofer IAP

Database on biodegradability of microcapsules

For more than 25 years, the Fraunhofer IAP has been developing microcapsules for a wide variety of applications - from encapsulated lubricants for moving plastic components such as gears or slide bearings, to fertilizers released in the soil over a long period of time and pigments that control the incidence of light in agricultural or greenhouse films.

The sustainability of the wall material is also always in the focus of development. Cosmetic and hygienic products such as shower baths, shampoos or detergents also contain microcapsules made of modified natural substances such as gelatine.

This biopolymer is often used as the wall material of microcapsules, which contain a fragrance and ensure that it is gradually released over a longer period of time.

"So far, there is very little data available in the scientific literature on the biodegradability of microcapsules, or particles in the size range from about one micrometer to several millimeters. That is why we want to investigate various modified natural substances and establish a database with information on their biodegradability," explains Kathrin Geßner, engineer in the Department of Microencapsulation and Polysaccharide Chemistry at the Fraunhofer IAP.

"These data will not only be of interest for microcapsules, but also for a large number of other applications in which release of bioplastics into soil is possible. This will also enable us to expand our portfolio with regard to the development of microcapsules," said Geßner.

Testing the biodegradability in fresh water, seawater or soil

In order to be able to make a statement about biodegradability, the researchers carry out a manometric respiration test in accordance with OECD 301 F based on DIN EN ISO 14851. The researchers obtain the oxygen demand of the sample directly as a measured value.

If the sum formula is known, the theoretical oxygen demand and finally the biochemical oxygen demand, or BOD , can be calculated. If a degradation value of 60 percent of the theoretical oxygen demand is achieved for the substance under investigation, it is considered to be biodegradable according to OECD 301 F.

"Among other things, we are developing microcapsule materials that biodegrade in an aqueous medium at 20 °C within 28 days. We get the microorganisms fresh from the sewage plant for each measurement," says Geßner. The measurement system used was purchased with funds from the Federal Ministry of Food and Agriculture BMEL as part of the project "Improvement of the biodegradability of modified biobased polymers through the use of microencapsulated enzymes - enzymics" (funding code 22014118) of the Agency of Renewable Resources.

Another test method is available in the biopolymer processing pilot plant at the Fraunhofer IAP's Schwarzheide site, in which the oxygen consumed is not only measured but also can be replaced. In this way, aerobic degradation conditions can always be maintained even with high oxygen consumption. In addition, the formation of carbon dioxide, which is produced during sample degradation, can be measured too.

With the two measuring systems the samples can be examined in different test media. Thus, the biodegradability in fresh water, sea water or soil can be simulated and diverse information can be collected for the database.

Gelatine, gum arabic, cellulose acetate

In their series of investigations, the researchers determine the biodegradability of commercially available biopolymers before and after their modification. Chemical crosslinking of biopolymers is often used for the production of microcapsules.

"By the end of 2020, we want to examine all biopolymers routinely used in our company and their modifications. Initial investigations with gelatine and gum arabic suggest that many of the routinely used in microencapsulation processes modifications have only a minor effect on the biodegradability of polymers. The situation seems to be different with cellulose acetate: Depending on the type of modification, the biodegradability might even be completely lost," explains Geßner.

Other biopolymers that the team of researchers will examine are alginate, carrageenan and polylactide. In addition to microcapsules and particles, the biodegradability of other materials and products developed at the Fraunhofer IAP is also being investigated, for example blends and compounds made from commercially available or in-house developed modified bioplastics such as PLA, PBS, PBSA, PBAT and starch- and cellulose-based plastics.

Dr. Sandra Mehlhase | Fraunhofer-Institut für Angewandte Polymerforschung IAP
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Innovative grilling technique improves air quality
01.07.2020 | Fraunhofer Institute for Building Physics IBP

nachricht Traffic density, wind and air stratification influence the load of the air pollutant nitrogen dioxide
26.06.2020 | Leibniz-Institut für Troposphärenforschung e. V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

Im Focus: AI monitoring of laser welding processes - X-ray vision and eavesdropping ensure quality

With an X-ray experiment at the European Synchrotron ESRF in Grenoble (France), Empa researchers were able to demonstrate how well their real-time acoustic monitoring of laser weld seams works. With almost 90 percent reliability, they detected the formation of unwanted pores that impair the quality of weld seams. Thanks to a special evaluation method based on artificial intelligence (AI), the detection process is completed in just 70 milliseconds.

Laser welding is a process suitable for joining metals and thermoplastics. It has become particularly well established in highly automated production, for...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

Latest News

Protective antibodies identified for rare, polio-like disease in children

06.07.2020 | Health and Medicine

How a mutation on the novel coronavirus has come to dominate the globe

06.07.2020 | Life Sciences

Order from noise: how randomness and collective dynamics define a stem cell

06.07.2020 | Life Sciences

Science & Research
Overview of more VideoLinks >>>