Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Big changes in the Sargasso Sea

24.09.2014

Over one thousand miles wide and three thousand miles long, the Sargasso Sea occupies almost two thirds of the North Atlantic Ocean. Within the sea, circling ocean currents accumulate mats of Sargassum seaweed that shelter a surprising variety of fishes, snails, crabs, and other small animals.

A recent paper by MBARI researcher Crissy Huffard and others shows that in 2011 and 2012 this animal community was much less diverse than it was in the early 1970s, when the last detailed studies were completed in this region. 


Small rafts of Sargassum seaweed like this one are a common site in the Sargasso Sea. These rafts harbor a variety of small animals. Image: Debbie Nail Meyer © 2011 MBARI

This study was based on field research led by MBARI Senior Scientist Ken Smith, using the Lone Ranger, a 78-meter (255-foot) research vessel owned and operated by the Schmidt Ocean Institute. During three cruises in 2011 and 2012, Smith’s team steamed across the Sargasso Sea and used dip nets to collect samples of Sargassum seaweed (and its associated animals) at six different locations. They then classified and counted all the animals at each site.

The researchers chose their sampling and counting methods carefully so that they could compare their results with previous surveys that had been conducted in 1972 and 1973 in the same general part of the Sargasso Sea. Amazingly, the researchers could find no other studies between 1973 and 2011 during which scientists had systematically counted the Sargassum animal communities in this area. 

When the team analyzed the data from the recent cruises, they were surprised to find that animal communities in the Sargassum rafts were significantly less diverse than those observed in the 1970s. For example, 13 species of animals in several different groups (worms, nudibranchs, crustaceans, and sea spiders) were observed in the historical samples but were missing from the recent samples.

Unfortunately, the researchers did not have enough data to determine whether the differences they observed were the result of long-term shifts in ocean conditions in the Sargasso Sea or natural variations from place-to-place, month-to-month, or year-to-year. 

The authors note that ocean conditions were much cooler than normal during February 2011 and that there were large differences in animal communities observed just six months apart, in August 2011 and February 2012. So it is possible that this area routinely sees large natural variations in the types of animals present. As Huffard put it, “If this is a long-term decline [in biodiversity], then it is a very significant one. But we don’t know if this is part of the natural variability in this community.”

Previous studies indicate that much of the seaweed that ends up in the Sargasso Sea originates in the Gulf of Mexico and is carried into the central Atlantic by the Gulf Stream and other currents. This suggests that, in addition to local ocean conditions, large-scale variations in ocean currents and conditions in the Gulf of Mexico could affect the animals in Sargassum communities.

To tease out these confounding variables, Smith and Huffard are hoping to conduct a series of follow-up expeditions to the Sargasso Sea. They plan to focus on the northern part of the Sargasso Sea, near Bermuda, where more detailed historical data are available. They are presently working on a proposal for a grant that would allow them to analyze satellite imagery and collect field samples twice a year for three years. The proposed study would show how much year-to-year variability is normal for this region. 

At first glance, the animals that live in Sargassum rafts seem isolated from the rest of the world. But, like the seaweed they live in, these animal communities have many links to larger ocean food webs. For example, Sargassum animals provide essential food for sea birds, sea turtles, and bluefin tuna—all long-distance migrators. In fact, Sargassum rafts have been designated as “essential fish habitat” by the South Atlantic Fishery Management Council. 

The world’s oceans are changing, with water temperatures and ocean acidity on the rise and oxygen concentrations on the decline. In the Sargasso Sea, as in many other locations, detecting the biological effects of these long-term trends is a formidable challenge because animal communities can vary dramatically over short time periods. This study shows that animal communities in the Sargasso Sea are definitely changing. The next step is to find out why.

###

For additional information or images relating to this news release, please contact:

Kim Fulton-Bennett
831-775-1835, kfb@mbari.org

Original journal article:
C.L. Huffard, S. von Thun, A.D. Sherman, K. Sealey and K.L. Smith, Jr. (2014) Pelagic Sargassum community change over a 40-year period: temporal and spatial variability. Marine Biology, doi10.1007/s00227-014-2539-y.

Kim Fulton-Bennett | Eurek Alert!

Further reports about: Aquarium Atlantic Bay Aquarium Research MBARI Monterey Sargasso Sea animals long-term seaweed variations

More articles from Ecology, The Environment and Conservation:

nachricht Waste in the water – New purification techniques for healthier aquatic ecosystems
24.07.2018 | Eberhard Karls Universität Tübingen

nachricht Plenty of habitat for bears in Europe
24.07.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

Molecular switch detects metals in the environment

15.08.2018 | Materials Sciences

Seeing on the Quick: New Insights into Active Vision in the Brain

15.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>