Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Benefits Abound with Recently Patented System That Reduces Phosphorus in Wastewater, Engineering Team Finds

07.12.2011
A team of bioprocessing engineers with Kansas State University's Advanced Manufacturing Institute has been issued a patent for a system that removes phosphorus from wastewater and addresses environmental regulations.

Excess phosphate from both animal and human wastewater is an important environmental problem. It can pollute water resources and cause algae blooms, a problem that was present in many Kansas lakes and reservoirs this summer.

The phosphorus reduction system, called Phred for short, is an easy-to-use fully automated system that removes up to 60 percent of phosphorus in wastewater from cattle feedlots. The system was issued as a patent titled "Fluidized bed precipitator with optimized solids settling and solids handling features for use in recovering phosphorus from wastewater" to the Kansas State University Research Foundation, a nonprofit corporation responsible for managing the technology transfer activities of the university.

"In essence, the system changes the chemistry of wastewater from the feedlot. It runs the water through the reactor and the phosphorus is retained in pellet form. A chemical reaction occurs, so the water comes out with lower phosphate levels," said Sigifredo Castro Diaz, a bioprocessing engineer with the Advanced Manufacturing Institute, or AMI, who helped create the patented system.

"Through this system, we can recycle the excess phosphate, while before it could be wasted and end up feeding algae water in lakes," Diaz said.

The project started as a partnership with Kansas Environmental Management Associates, or KEMA. The researchers created a pilot system in the laboratory then used a scale version on the university's lagoon or the feeding operation pond. Finally, the team developed a large-scale system to use at Supreme Cattle Feeders near Liberal, Kan.

The final patented system works by removing phosphorus from lagoons and trapping it in pellet form, making it easier to distribute and package. By doing so, it addresses two important farming concerns involving irrigation.

"Without the system, if farmers reuse the wastewater and there is too much phosphorus in it, they can face fines by the EPA," Diaz said. "But during a drought, it is not helpful to have all this water that they cannot use because of the phosphorus content. So with this phosphorus reduction system, farmers can remove the phosphorus and safely use the water."

As a result, the system helps farmers cut costs while following Environmental Protection Agency regulations. Farmers can purchase the system with assistance from the Environmental Quality Incentive Program, a federal program that provides assistance to farmers. While competitive systems exist, they are often more expensive, less efficient and less applicable to agricultural wastewater, the researchers said.

"The development of the Phred system provides livestock farms and others with a valuable tool to protect our nation's lakes, streams and estuaries, and KEMA is proud to be the driving force behind its development," said Kylo Heller, director of development for KEMA.

Diaz is now leading related research projects through partnerships with Kansas State University and other organizations. The team is improving the efficiency of the current bioprocessing system by partnering with additional AMI and university researchers, such as Larry Glasgow, professor of chemical engineering.

The researchers are discovering uses for the phosphorus pellets that come from the system. Kimberly Williams, professor of horticulture, worked on a nutrient release study and found several important advantages of phosphorus pellets as fertilizer for lawns and plants. For instance, the pellets are a natural slow-release fertilizer, meaning they slowly release nutrients to plants.

Similarly, the team is looking at ways to decrease phosphorus in cattle feed. Doing so will prevent excess phosphorus from entering the ecosystem.

While the current system is optimally designed for wastewater from cattle feedlots, Diaz has been leading efforts to apply the same method at dairy and hog farms. The wastewater from these farms is different because it often comes from indoor barns that produce more phosphate-concentrated wastewater. The researchers have proved that the same system can work with both types of farms and are now working to fine-tune it.

Other AMI engineers who worked on the patented system include Gina Becker, former bioprocessing engineer, and Michael Hanson, a Kansas State University chemical engineering graduate and a former intern.

Other partners on the project include: KansasBio, the Kansas Livestock Association, DT Search and Designs LLC, KLA Environmental Services Inc., Kansas Bioscience Authority, Kansas Corn Commission, Missouri Life Science Research Board, the National Resources Conservation Service with the U.S. Department of Agriculture, Kansas Conservation Commission, Kansas Water Office and the Kansas Department of Health and Environment.

Sigifredo Castro Diaz, 785-532-7044, scastro@amisuccess.com;
and Lea Studer, 785-532-3432, lstuder@k-state.edu

Sigifredo Castro Diaz | Newswise Science News
Further information:
http://www.k-state.edu

More articles from Ecology, The Environment and Conservation:

nachricht Despite government claims, orangutan populations have not increased. Call for better monitoring
06.11.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Increasing frequency of ocean storms could alter kelp forest ecosystems
30.10.2018 | University of Virginia

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Epoxy compound gets a graphene bump

14.11.2018 | Materials Sciences

Microgel powder fights infection and helps wounds heal

14.11.2018 | Health and Medicine

How algae and carbon fibers could sustainably reduce the athmospheric carbon dioxide concentration

14.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>