Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Benefits Abound with Recently Patented System That Reduces Phosphorus in Wastewater, Engineering Team Finds

07.12.2011
A team of bioprocessing engineers with Kansas State University's Advanced Manufacturing Institute has been issued a patent for a system that removes phosphorus from wastewater and addresses environmental regulations.

Excess phosphate from both animal and human wastewater is an important environmental problem. It can pollute water resources and cause algae blooms, a problem that was present in many Kansas lakes and reservoirs this summer.

The phosphorus reduction system, called Phred for short, is an easy-to-use fully automated system that removes up to 60 percent of phosphorus in wastewater from cattle feedlots. The system was issued as a patent titled "Fluidized bed precipitator with optimized solids settling and solids handling features for use in recovering phosphorus from wastewater" to the Kansas State University Research Foundation, a nonprofit corporation responsible for managing the technology transfer activities of the university.

"In essence, the system changes the chemistry of wastewater from the feedlot. It runs the water through the reactor and the phosphorus is retained in pellet form. A chemical reaction occurs, so the water comes out with lower phosphate levels," said Sigifredo Castro Diaz, a bioprocessing engineer with the Advanced Manufacturing Institute, or AMI, who helped create the patented system.

"Through this system, we can recycle the excess phosphate, while before it could be wasted and end up feeding algae water in lakes," Diaz said.

The project started as a partnership with Kansas Environmental Management Associates, or KEMA. The researchers created a pilot system in the laboratory then used a scale version on the university's lagoon or the feeding operation pond. Finally, the team developed a large-scale system to use at Supreme Cattle Feeders near Liberal, Kan.

The final patented system works by removing phosphorus from lagoons and trapping it in pellet form, making it easier to distribute and package. By doing so, it addresses two important farming concerns involving irrigation.

"Without the system, if farmers reuse the wastewater and there is too much phosphorus in it, they can face fines by the EPA," Diaz said. "But during a drought, it is not helpful to have all this water that they cannot use because of the phosphorus content. So with this phosphorus reduction system, farmers can remove the phosphorus and safely use the water."

As a result, the system helps farmers cut costs while following Environmental Protection Agency regulations. Farmers can purchase the system with assistance from the Environmental Quality Incentive Program, a federal program that provides assistance to farmers. While competitive systems exist, they are often more expensive, less efficient and less applicable to agricultural wastewater, the researchers said.

"The development of the Phred system provides livestock farms and others with a valuable tool to protect our nation's lakes, streams and estuaries, and KEMA is proud to be the driving force behind its development," said Kylo Heller, director of development for KEMA.

Diaz is now leading related research projects through partnerships with Kansas State University and other organizations. The team is improving the efficiency of the current bioprocessing system by partnering with additional AMI and university researchers, such as Larry Glasgow, professor of chemical engineering.

The researchers are discovering uses for the phosphorus pellets that come from the system. Kimberly Williams, professor of horticulture, worked on a nutrient release study and found several important advantages of phosphorus pellets as fertilizer for lawns and plants. For instance, the pellets are a natural slow-release fertilizer, meaning they slowly release nutrients to plants.

Similarly, the team is looking at ways to decrease phosphorus in cattle feed. Doing so will prevent excess phosphorus from entering the ecosystem.

While the current system is optimally designed for wastewater from cattle feedlots, Diaz has been leading efforts to apply the same method at dairy and hog farms. The wastewater from these farms is different because it often comes from indoor barns that produce more phosphate-concentrated wastewater. The researchers have proved that the same system can work with both types of farms and are now working to fine-tune it.

Other AMI engineers who worked on the patented system include Gina Becker, former bioprocessing engineer, and Michael Hanson, a Kansas State University chemical engineering graduate and a former intern.

Other partners on the project include: KansasBio, the Kansas Livestock Association, DT Search and Designs LLC, KLA Environmental Services Inc., Kansas Bioscience Authority, Kansas Corn Commission, Missouri Life Science Research Board, the National Resources Conservation Service with the U.S. Department of Agriculture, Kansas Conservation Commission, Kansas Water Office and the Kansas Department of Health and Environment.

Sigifredo Castro Diaz, 785-532-7044, scastro@amisuccess.com;
and Lea Studer, 785-532-3432, lstuder@k-state.edu

Sigifredo Castro Diaz | Newswise Science News
Further information:
http://www.k-state.edu

More articles from Ecology, The Environment and Conservation:

nachricht Deep decarbonization of industry is possible with innovations
25.03.2019 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Five-point plan to integrate recreational fishers into fisheries and nature conservation policy
20.03.2019 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Laser processing is a matter for the head – LZH at the Hannover Messe 2019

25.03.2019 | Trade Fair News

A Varied Menu

25.03.2019 | Life Sciences

‘Time Machine’ heralds new era

25.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>