Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Baby Fish in Polluted San Francisco Estuary Waters Are Stunted and Deformed

10.12.2008
Striped bass in the San Francisco Estuary are contaminated before birth with a toxic mix of pesticides, industrial chemicals and flame retardants that their mothers acquire from estuary waters and food sources and pass on to their eggs, say UC Davis researchers.

Using new analytical techniques, the researchers found that offspring of estuary fish had underdeveloped brains, inadequate energy supplies and dysfunctional livers. They grew slower and were smaller than offspring of hatchery fish raised in clean water.

"This is one of the first studies examining the effects of real-world contaminant mixtures on growth and development in wildlife," said study lead author David Ostrach, a research scientist at the UC Davis Center for Watershed Sciences. He said the findings have implications far beyond fish, because the estuary is the water source for two-thirds of the people and most of the farms in California.

"If the fish living in this water are not healthy and are passing on contaminants to their young, what is happening to the people who use the water, are exposed to the same chemicals or eat the fish?" Ostrach said.

"We should be asking hard questions about the nature and source of these contaminants, as well as acting to stop the ongoing pollution and mitigate these current problems."

The new study, published online Nov. 24 by the journal Proceedings of the National Academy of Sciences, is one of a series of reports by Ostrach and UC Davis colleagues on investigations they began in 1988. Their goal is to better understand the reasons for plummeting fish populations in the estuary, an enormous California region that includes the Sacramento-San Joaquin River Delta and San Francisco Bay.

The estuary is one of the world's most important water supplies for urban use and agriculture, and is also one of the most contaminated aquatic ecosystems.

The ominous decline in estuary populations of striped bass, delta smelt, longfin smelt and threadfin shad, named the "pelagic organism decline," or POD, by the region's environmental scientists, was first reported at the turn of the century and has continued to worsen through 2007.

Ostrach's lab at UC Davis is part of the multi-agency POD research team and charged with understanding contaminant effects and other environmental stressors on the entire life cycle of striped bass.

Studies of striped bass are useful because, first, they are a key indicator of San Francisco Estuary ecosystem health and, second, because contaminant levels and effects in the fish could predict the same in people. For example, one of the contaminants found in the fish in this study, PDBEs, have been found in Bay Area women's breast milk at levels 100 times those measured in women elsewhere in the world.

The new study details how Ostrach and his team caught gravid female striped bass in the Upper Sacramento River, then compared the river fishes' eggs and hatchlings (larvae) to offspring of identical but uncontaminated fish raised in a hatchery.

In the river-caught fishes' offspring, the UC Davis researchers found harmful amounts of PBDEs, PCBs and 16 pesticides.

PBDEs (polybrominated diphenyl ethers) are widely used flame retardants; PCBs (polychlorinated biphenyls) are chemicals once used in making a range of products, from paper goods to electric transformers; and the pesticides detected include some currently widely used in agriculture, such as chlorpyrifos and dieldren, and others banned decades ago, such as DDT.

These compounds are known to cause myriad problems in both young and adult organisms, including skeletal and organ deformities and dysfunction; changes in hormone function (endocrine disruption); and changes in behavior. Some of the effects are permanent. Furthermore, Ostrach said, when the compounds are combined, the effects can be increased by several orders of magnitude.

Ostrach's co-authors Janine Low-Marchelli and Shaleah Whiteman are former UC Davis undergraduate students. Co-author Kai Eder was Ostrach's postdoctoral scholar in Joseph Zinkl's laboratory in the UC Davis School of Veterinary Medicine.

Since 1988, the Ostrach laboratory has received more than $1.5 million in funding from agencies working on Bay-Delta ecosystem problems and expects to conduct an additional $1.5 million worth of studies in the next few years. Key funders include the UC Davis School of Veterinary Medicine, California's Department of Water Resources, State Water Resources Control Board and Department of Fish and Game, San Francisco Estuary Institute and the U.S. Fish and Wildlife Service.

About UC Davis
For 100 years, UC Davis has engaged in teaching, research and public service that matter to California and transform the world. Located close to the state capital, UC Davis has 31,000 students, an annual research budget that exceeds $500 million, a comprehensive health system and 13 specialized research centers. The university offers interdisciplinary graduate study and more than 100 undergraduate majors in four colleges -- Agricultural and Environmental Sciences, Biological Sciences, Engineering, and Letters and Science -- and advanced degrees from five professional schools: Education, Law, Management, Medicine, and Veterinary Medicine. The UC Davis School of Medicine and UC Davis Medical Center are located on the Sacramento campus near downtown.

Davis Ostrach | EurekAlert!
Further information:
http://www.ucdavis.edu

More articles from Ecology, The Environment and Conservation:

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

nachricht 100 % Organic Farming in Bhutan – a Realistic Target?
15.06.2018 | Humboldt-Universität zu Berlin

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>