Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

As hubs for bees and pollinators, flowers may be crucial in disease transmission

24.02.2014
Like a kindergarten or a busy airport where cold viruses and other germs circulate freely, flowers are common gathering places where pollinators such as bees and butterflies can pick up fungal, bacterial or viral infections that might be as benign as the sniffles or as debilitating as influenza.

But "almost nothing is known regarding how pathogens of pollinators are transmitted at flowers," postdoctoral researcher Scott McArt and Professor Lynn Adler at the University of Massachusetts Amherst write. "As major hubs of plant-animal interactions throughout the world, flowers are ideal venues for the transmission of microbes among plants and animals."


Several bees are known to vector mummyberry disease (Monilinia vaccinii-corymbosi), an economically important plant pathogen, to blueberry flowers. At the same time, bees can transmit their own pathogens, such as Crithidia bombi (see photo below) at flowers.

Credit: Scott McArt, UMass Amherst

In a recent review in Ecology Letters with colleagues at Yale and the University of Texas at Austin, McArt and Adler survey the literature and identify promising areas for future research on how floral traits influence pathogen transmission.

As the authors point out, "Given recent concerns about pollinator declines caused in part by pathogens, the role of floral traits in mediating pathogen transmission is a key area for further research." They say their synthesis could help efforts to control economically devastating pollinator-vectored plant pathogens such as fire blight, which affects rose family fruits such as apples and pears, and mummyberry disease, which attacks blueberries.

McArt adds, "Our intent with this paper is to stimulate interest in the fascinating yet poorly understood microbial world of flowers. We found several generalities in how plant pathogens are transmitted at flowers, yet the major take-home from our paper may be in pointing out that this is an important gap in our knowledge."

The authors identified 187 studies pertaining to plant pathogens published between 1947 and 2013 in which floral visitors were implicated in transmission and where transmission must have occurred at flowers or pathogen-induced pseudoflowers. These are flower-like structures made by a pathogen that can look and smell like a real flower, for example. Regarding animal pathogens, they identified 618 studies published before September 2013 using the same criteria.

"In total, we found eight major groups of animal pathogens that are potentially transmitted at flowers, including a trypanosomatid, fungi, bacteria and RNA viruses," they note. Their paper, "Arranging the bouquet of disease: Floral traits and the transmission of plant and animal pathogens," was featured in the publisher's "News Round-Up" of "most newsworthy research."

Traditionally, research on flower evolution has focused largely on selection by pollinators, but as McArt and colleagues point out, pollinators that also transmit pathogens may reduce the benefits to the plant of attracting them, depending on the costs and benefits of pollination. The researchers say more work is needed before scientists can know whether a flower's chemical or physical traits determine the likelihood that pathogens are transmitted, for example, and whether infection by pathogens is an inevitable consequence of pollinator visitation.

"Plant pathologists have made great strides in identifying floral traits that mediate host plant resistance to floral pathogens in individual systems; synthesizing this literature can provide generality in identifying traits that mediate plant-pathogen dynamics. From the pollinator's perspective, there has been surprisingly little work elucidating the role of flowers and floral traits for pathogen transmission. Given recent concerns about pollinator declines caused in part by pathogens, understanding the role of floral traits in disease transmission is a key missing element," say McArt and colleagues.

Janet Lathrop | EurekAlert!
Further information:
http://www.umass.edu

Further reports about: Ecology animals microbes pathogens pollinator-vectored plant pathogens

More articles from Ecology, The Environment and Conservation:

nachricht Black carbon found in the Amazon River reveals recent forest burnings
20.11.2019 | Fundação de Amparo à Pesquisa do Estado de São Paulo

nachricht Typhoons and marine eutrophication are probably the missing source of organic nitrogen in ecosystems
15.11.2019 | Institute of Atmospheric Physics, Chinese Academy of Sciences

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

Cohesin - a molecular motor that folds our genome

22.11.2019 | Life Sciences

Magnesium deprivation stops pathogen growth

22.11.2019 | Health and Medicine

Detecting mental and physical stress via smartphone

22.11.2019 | Studies and Analyses

VideoLinks
Science & Research
Overview of more VideoLinks >>>