Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Agricultural revolution in Africa could increase global carbon emissions

09.09.2014

Productivity-boosting agricultural innovations in Africa could lead to an increase in global deforestation rates and carbon emissions, a Purdue University study finds.

Historically, improvements in agricultural technology have conserved land and decreased carbon emissions at the global level: Gaining better yields in one area lessens the need to clear other areas for crops, sidestepping a land conversion process that can significantly raise the amount of carbon dioxide released into the atmosphere.


Thomas Hertel

Agricultural advances in Africa, however, could have the reverse effect, increasing globally the amount of undeveloped land converted to cropland and raising greenhouse gas emissions, said Thomas Hertel, a distinguished professor of agricultural economics.

"Increasing productivity in Africa - a carbon-rich region with low agricultural yields - could have negative effects on the environment, especially if agricultural markets are highly integrated," he said. "This study highlights the importance of understanding the interplay between globalization and the environmental impacts of agricultural technology. They are deeply intertwined."

Debate surrounds the effects of agricultural innovation on the environment, Hertel noted. Some researchers suggest that increasing the profitability of farming will amplify its negative environmental effects, raising greenhouse gas emissions and accelerating tropical deforestation.

Others argue that intensifying agricultural production is better for the environment overall because more land can be spared for nature if the same amount of crops can be produced using less land.

"We set out to determine who was right," Hertel said. "We discovered that both hypotheses can be valid - it depends on the local circumstances."

Hertel and fellow researchers Navin Ramankutty and Uris Baldos developed a novel economic framework to analyze the effects of regional improvements in agricultural technology on global rates of land use and carbon emissions. Their analysis showed that historical "green revolutions" in regions such as Latin America and Asia - in which better varieties of cereal grains produced dramatic gains in harvests - helped spare land and diminish carbon emissions compared with an alternative scenario without crop innovations.

The global effects of a green revolution in Africa, however, are less certain, Hertel said.

"If the future global economy remains as fragmented as it has been historically - a world of very distinct agricultural markets - then a green revolution in Africa will lower global carbon emissions," he said. "But if markets become more integrated, faster agricultural innovation in Africa could raise global carbon emissions in the coming decades."

In an integrated world markets scenario, the researchers' analysis showed that ramping up agricultural productivity in Africa over the years 2025-2050 could increase global cropland expansion by 1.8 million hectares (4.4 million acres) and global carbon emissions by 267 million metric tons.

The sharp differences between the global impacts of a prospective African green revolution and those of previous green revolutions can be traced to several factors, Hertel said.

In an African green revolution, the relatively lower yields of African croplands would require more area to be converted to agriculture to make up for the displaced crop production in the rest of the world. The area converted would likely be carbon intensive and have a low emissions efficiency – that is, crop yields would be low relative to the carbon emissions released by converting the land to crops.

But the potential negative effects of an African green revolution will diminish over time, Hertel said. If sustained over several decades, agricultural innovation in Africa would eventually conserve land and decrease carbon emissions, especially if yields improved quickly. The most carbon-rich land, however, should be immediately protected from conversion to cropland, he said.

"We need to prevent regions in Africa that are rich in carbon and biodiversity from being cleared for agriculture to avoid increasing emissions," he said. "Boosting yields brings many benefits, but increasing global food supplies while minimizing the environmental footprint of agriculture remains a major challenge."

The paper was published Monday (Sept. 8) in the Proceedings of the National Academy of Science

Writer:  Natalie van Hoose, 765-496-2050, nvanhoos@purdue.edu  

Source: Thomas Hertel, 765-494-4199, hertel@purdue.edu 

ABSTRACT

Global Market Integration Increases Likelihood that a Future African Green Revolution Could Increase Crop Land Use and CO2 emissions

Thomas W. Hertel 1; Navin Ramankutty 2; Uris Lantz C. Baldos 1

1 Department of Agricultural Economics, Purdue University, West Lafayete, Indiana, 47907, USA

2 Department of Geography, McGill University, Montreal, Quebec, H3A 0B9, Canada

E-mail: hertel@purdue.edu 

There has been a resurgence of interest in the impacts of agricultural productivity on land use and the environment. At the center of this debate is the assertion that agricultural innovation is land sparing. However, numerous case studies and global empirical studies have found little evidence of higher yields being accompanied by reduced area. We find that these studies overlook two crucial factors: estimation of a true counterfactual scenario and a tendency to adopt a regional, rather than a global, perspective. This paper introduces a general framework for analyzing the impacts of regional and global innovation on long-run crop output, prices, land rents, land use, and associated carbon dioxide emissions. In so doing, it facilitates a reconciliation of the apparently conflicting views of the impacts of agricultural productivity growth on global land use and environmental quality. Our historical analysis demonstrates that the Green Revolution in Asia, Latin America, and the Middle East was unambiguously land and emissions sparing, compared to a counterfactual world without these innovations. In contrast, we find that the environmental impacts of a prospective African Green Revolution are potentially ambiguous. We trace these divergent outcomes to relative differences between the innovating region and the rest of the world in yields, emissions efficiencies, cropland supply response, and intensification potential. Globalization of agriculture raises the potential for adverse environmental consequences. However, if sustained for several decades, an African Green Revolution will eventually become land sparing.  

Ag Communications: (765) 494-2722;
Keith Robinson, robins89@purdue.edu
Agriculture News Page

Natalie van Hoose | Eurek Alert!
Further information:
http://www.purdue.edu/newsroom/releases/2014/Q3/agricultural-revolution-in-africa-could-increase-global-carbon-emissions.html

Further reports about: African Agricultural agriculture crop crops dioxide emissions productivity

More articles from Ecology, The Environment and Conservation:

nachricht Rain is important for how carbon dioxide affects grasslands
06.03.2019 | University of Gothenburg

nachricht Northeast-Atlantic fish stocks: Recovery driven by improved management
04.02.2019 | Johann Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

Im Focus: Sensing shakes

A new way to sense earthquakes could help improve early warning systems

Every year earthquakes worldwide claim hundreds or even thousands of lives. Forewarning allows people to head for safety and a matter of seconds could spell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Levitating objects with light

19.03.2019 | Physics and Astronomy

New technique for in-cell distance determination

19.03.2019 | Life Sciences

Stellar cartography

19.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>