Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Landscape-Scale Experiment in Restoring Ozark Glades

01.02.2012
A giant experiment is under way at the Tyson Research Center, Washington University in St. Louis’ 2,000-acre outdoor laboratory for ecosystem studies.

The experiment, led by Tiffany Knight, PhD, associate professor of biology in Arts & Sciences, will test three different variables in 32 glades with the goal of establishing best practices for restoring not just degraded glade habitats but degraded ecosystems in general.

“These glade restorations are going to be a really significant scientific resource, not just for people at Washington University but for people both nationally and internationally,” says Barbara Schaal, PhD, professor of biology and director of the Tyson Research Center.

“The opportunity to do giant manipulations and experiments is really rare, and we expect this experiment is going to draw researchers from all over the world,” Schaal says.

Missouri glades, which ecologists sometimes call sunlit islands in a forested sea, are areas of exposed bedrock in the Ozark woodlands that create their own hot, dry, desert-like microclimates and have their own unique mixture of species, including tarantulas, scorpions, and prickly pear cactus.

Before people settled the area, glades covered the Ozark mountain hilltops and oaks nestled in the valleys between ridges. When fires were suppressed after World War II, eastern red cedar — once confined to river bluffs — and rock outcrops invaded the glades, completely altering the character of these habitats and the mixture of species that lived there.

Knight’s group prepared for restoring the Tyson glades by surveying about 30 other glade restorations elsewhere in the state. “We expected smaller stored glades to have fewer species than larger glades, but we found that they had even fewer than we expected and they were also more impoverished in rare species than we expected,” Knight says.

So they decided to find out why by running the restoration of 32 glades at Tyson as a scientific experiment, complete with treatment groups and control groups.

“We’re manipulating glade shape, we’re manipulating glade size, and we’re manipulating whether or not plant species are seeded or allowed to establish on their own,” Knight says. “Those are our three big treatments, and then we’ll judge the outcome by measuring the biodiversity and composition of plants.

“Glades are biodiversity treasure chests,” Knight says. “This study focuses on a unique Ozark glade ecosystem that has been a home to many rare and endangered species found nowhere else in the world.

“Our results will have important implications for understanding and trying to mitigate biodiversity loss from small habitats, especially loss of rare species.”

On the way to the fire
In 2009, areas at the Tyson Research Center that had historically been glades were cleared by ax and chainsaw. These openings are now being maintained — as they traditionally were — by fire.

The prescribed burns began the week of Jan. 9, 2012. With weather conditions perfect, the glades were being burned, at the rate of about two a day. Knight picked up the videographer and reporter at the research center to drive them to the fire site.

Tiffany Knight explains the glade restoration experiment on the day of a prescribed burn.

“Usually there are several clues that an area was a glade,” Knight said over the rumble of the pickup. “When you’re driving along, you’ll see big boulders and rocks right on the surface of the soil. What that tells us is the soil is really shallow, which is characteristic of a glade habitat.

“Another thing you’ll notice, especially in aerial photographs taken in winter, is eastern red cedar. The southwestern corner of the Tyson Research Center is covered with it. Eastern red cedar is the first plant to encroach on glades in the absence of fire. If fire is suppressed, eastern red cedar comes in, gets established, and allows the glade habitat to succeed into a forest.

“Another telltale sign is plants that are remnants of glades. I’d be walking through the forest doing other research,” Knight says, “and I would notice plant species like cactus in the middle of the forest. It was clearly a species just trying to hang on, waiting for the day when the habitat became a glade again.

“All of these are good indicators that an area was a glade historically,” she says.

By now we had arrived at the next glade to be burned, a big, round glade with a southern exposure that had been strewn with the seeds of glade-favoring species.

At the fire
“Fire travels uphill,” Knight says as we get out of the pickup, “so they burn the top of the hill first — a small, low-intensity burn — so that when they light the bottom and the fire moves up, there’s no way for it to ignite the slash (piles of timber and brush) left over from glade clearing.”

The crews are motley: half pros, half students. One of the teams is led by John Timmerman, a retired firefighter who now does prescribed burns. Another is led by John Wingo, a contractor whose business is ecological restoration. They wield the drip torches and leaf blowers (used to extinguish small flames).

Even though it’s winter break students are scraping out the fire break around the glade and are raking embers back into burning piles of vegetation.

“The research involves scientists at all levels: faculty, postdoctoral associates, graduate students, undergraduates and high school interns,” Knight says.

“My only job at these fires,” Knight says, “is to look outside the fire circle and make sure flying sparks haven’t set anything alight.

“This glade was seeded,” Knight says, walking by the flaming stalks of wooly mullein, “by a striking plant that is adapted to live in disturbed landscapes, but will eventually be outcompeted by returning glade species.

“We put in 50 species, and we went to extra effort to get some of the rarest species in there, some that are listed by the state or federal government as threatened and others that grow only in glade ecosystems.”

Holly Bernardo, who has a master’s degree in ecology and is a technician on the project, explains how they got the seeds. “There are some local seed houses,” Bernardo says, “and — their words, not mine — they have a bunch of old hippies they send out to collect seeds for them. We tell them what we want, and they go find it and take care of all the permitting for us.

“Six or seven species we collected ourselves from the Missouri Botanical Garden’s Shaw Nature Reserve because there are so many nice populations on its restored glades.

“The seed houses are pretty good for the normal stuff, general glade species that also grow in prairies and other habitats,” Bernardo says. “Those are easy to get.”

Tephrosia from Wikimedia Commons; all others from Missouri Botanical Garden

Plants seeded in the glades include, clockwise from top left: Rudbeckia missouriensis, Dalea purpurea, Baptisia austalis and Tephrosia virginiana.

Among the seeded species are Tephrosia virginiana, or goat’s rue; Dalea purpurea, called purple prairie clover; Rudbeckia missouriensis, the poster child for Missouri glades; Opuntia humifusa, the prickly pear cactus; and Baptisia australis, or blue indigo.

Afterglow
By now the glade has been reduced to patchy white ash and the crew is regrouping to move to the next glade to be burned.

The glades will be burned next year, and the year after that. There will be more ash next year, says Knight, when there is more plant biomass available to burn.

The National Science Foundation has funded the restoration experiment for five years, says Knight, the standard grant period. But this is really a 20- to 30-year experiment that will spawn other questions and smaller experiments to answer those questions.

“The Opuntia pads we put in this summer took really well,” Bernardo says. “They grow really slowly, but we’ll have some nice Opuntia populations in 20 years.”

Knight is in it for the long haul. She plans to monitor plant communities in the glade ecosystems for decades, following several rare species. Additional experiments will test the importance of plant and animal interactions on biodiversity, such as the impact of mammal and insect predation.

Although the plants are the stars of this show, Knight already has initiated collaborations with other scientists to keep an eye on the animals — at least the small ones.

James Trager, PhD, of the Missouri Botanical Garden, is monitoring the recovery of ant populations, and Mike Arduser, a bee specialist with the Missouri Department of Conservation, is interested in how long it will take for glade-endemic bees to return.

“This is stunning work,” Schaal says. “Not only do we have the expanse of Tyson to experiment with, the design of the project is just simply clever, and we have the intellectual resources to really follow the research.

“It’s a huge, clever project and I’m really excited about it,” says Schaal.

| Newswise Science News
Further information:
http://www.wustl.edu/

More articles from Ecology, The Environment and Conservation:

nachricht Five-point plan to integrate recreational fishers into fisheries and nature conservation policy
20.03.2019 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Rain is important for how carbon dioxide affects grasslands
06.03.2019 | University of Gothenburg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>