A lake fauna in a shot-glass

Global biodiversity is plummeting while biologists are fighting to keep score and reliable monitoring of threatened animals remains a major challenge. The biologist toolset has changed little on this area for a hundred years – still relying on expensive expert surveys basically finding and counting the animals.

However, this situation is now set to change according to a recent study by researchers at the Natural History Museum of Denmark published as a cover story in the acclaimed scientific journal Molecular Ecology. The results of the study show that a new method can be used to monitor rare and threatened animal species from DNA traces in their freshwater environments.

The development of the innovative DNA species monitoring was accomplished by PhD student Philip Francis Thomsen and Master's students Jos Kielgast and Lars L. Iversen at Centre for GeoGenetics headed by professor Eske Willerslev.

“We have shown that the DNA detection method works on a wide range of different rare species living in freshwater – they all leave DNA traces in their environment which can be detected in even very small water samples from their habitat. In the water samples we find DNA from animals as different as an otter and a dragonfly,” says Philip Francis Thomsen.

By studying the fauna of one hundred different lakes and streams in Europe with both conventional methods – counting individuals – and the new DNA-based method the research team documents that DNA detection is effective even in populations where the animals are extremely rare. The study also shows that there is a clear correlation between the amount of DNA in the environment and the density of individuals meaning that the DNA detection method can even be used to estimate population sizes. This is crucial in the monitoring of rare animals, where one often wants to know whether the population is large or small.

“The UN has agreed to halt the decline of biodiversity, but a prerequisite to do so is that we are capable of properly documenting the status of threatened species. Our new approach is a huge step forward making it cheaper and faster to monitor the endangered species, and thus prioritise efforts to the benefit of biodiversity at a broad scale,” says Jos Kielgast.

The researchers have documented that DNA traces of animals are nearly ubiquitous in the freshwater environment and, as a proof-of-concept, these findings may have wider implications reaching disciplines far beyond threatened species monitoring. With DNA sequencing technology advancing at rapidly dropping costs, environmental DNA research is set to change from being merely a scientific curiosity to become an important tool in applied biology. It is for example conceivable that fishing quota may in the future be based on DNA traces rather than fish catches.

Contact information

PhD student, Philip Francis Thomsen (tel. 45-27142046)

Master's thesis student, Jos Kielgast (tel. 45-28492128), skypename: jos_kielgast

Media Contact

Philip Francis Thomsen EurekAlert!

More Information:

http://www..ku.dk

All latest news from the category: Ecology, The Environment and Conservation

This complex theme deals primarily with interactions between organisms and the environmental factors that impact them, but to a greater extent between individual inanimate environmental factors.

innovations-report offers informative reports and articles on topics such as climate protection, landscape conservation, ecological systems, wildlife and nature parks and ecosystem efficiency and balance.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors