Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A coupled numerical hydrodynamic water quality model of the river environment

10.06.2013
Because of the combination of environmental change and economic and social development, there are new pressures on the development and use of water resources.

After 5 years of innovative research, Professor WANG Jianhua and his group, from the State Key Laboratory of Simulation and Regulation of the Water Cycle in River Basins of the China Institute of Water Resources and Hydropower Research, have developed a new coupled numerical hydrodynamic water quality model of the river environment.

The model has been applied in the Luan River Basin where the model parameters were calibrated and validated. Their work, entitled "Integrated Simulation and Assessment of Water Quantity and Quality for a River Under Changing Environmental Conditions", has been published in the Chinese Science Bulletin (In Chinese, 2013, No.12).

Because of the increasing cumulative effects of the environment on water quality, many aquatic systems cannot meet the demands for water resource development and use. In general terms, water quantity and quality simulation and assessment methods have several shortcomings, for example, water quantity and quality are assessed separately, they are assessed at limited spatial and temporal scales, assessment is static rather than dynamic and objects are evaluated individually.

To address these problems, and to help us understand the interactions between water quantity and quality in different water bodies, we need to develop a comprehensive assessment method using current available information on water resources, and on pollutants that are generated by hydrological processes, such as runoff generation, conflux, and drainage. In short, we urgently need to establish dynamic methods for integrated simulation and assessment of river water quantity and quality.

The river hydrodynamic model was validated by comparing water level and flow data collected at the Guojiatun and Sandaohezi stations on the main stem of the Luan River in 2006. Water level and flow were simulated at these sites, and compared with actual data (Figure 1). The results showed that the difference between the simulated and observed flow was less than 10% for 85% and 82% of the flow data from the Guojiatun and Sandaohezi stations, while 90% of the differences between simulated and observed water level were less than 10%, all of which fully satisfied the accuracy requirements for the model application.

The area of the Panjiakou Reservoir fits into a maximum of 64 grid cells in the horizontal direction and 69 grid cells in the vertical direction. This means that, when the horizontal computing unit is 1 km and the vertical computing unit is1m, there are 2246 calculated grid cells. The measured TN and TP concentrations were used to validate the water quality characteristics of the reservoir. Validation results are shown in Figure 2. Comparison of the monitored and simulated values showed that the average error for each sampling site was 12% for TP and 9% for TN. Although some sites had relatively large errors, overall, the model satisfied the application requirements.

Under constantly changing environmental conditions, it is clear that dynamic changes in river water quantity and quality are closely related, so we need to develop new scientific methods for integrated simulation and assessment of these two characteristics of water. In this study, we constructed and validated an integrated model to simulate river system hydrodynamics and water quality. The validation indicated that the error between the simulated and monitored values was comparatively small, demonstrating that (1) the model satisfied the demands for its application and (2) it was possible to simulate integrated dynamic changes in water quantity and quality.

The water environment in the Luan River Basin has been dramatically altered because of global climatic change and highly insensitive human activities. Results of the integrated dynamic assessment model for water quantity and quality show that the water in the upper reaches of the Luan River Basin were classified from type I to type V as follows: 11.9% (type I), 16.9%, 32.3%, 14.2%, 19.4% and 5.3% (type V). In addition, the water quality of the main water body of the Panjiakou Reservoir was classified as type IV.

We need integrated water quality and quantity simulation and assessment for effective water resource management. Although we have achieved integrated simulation and assessment of river systems, we still need to improve statistical analyses of inflows of both point and diffuse source pollutants. In addition, the current hydrology and water quality monitoring data series are relatively short, so the conclusions from integrated simulation and assessment cannot show either the impacts of anthropogenic activities or climate change. Therefore, there is a need for further research on the integrated simulation and assessment of water quantity and quality under changing environmental conditions.

See the article: Wang J H, Xiao W H, Wang H, et al. Integrated simulation and assessment of water quantity and quality for a river under changing environmental conditions. Chin Sci Bull, 2013, 58(12): 1101-1108 doi: 10.1007/s11434-012-5622-0

http://csb.scichina.com:8080/kxtb/CN/abstract/abstract510189.shtml#
Science China Press Co., Ltd. (SCP) is a scientific journal publishing company of the Chinese Academy of Sciences (CAS). For 50 years, SCP takes its mission to present to the world the best achievements by Chinese scientists on various fields of natural sciences researches.

WANG Jianhua | EurekAlert!
Further information:
http://www.zh.scichina.com/english/

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling of PET Bottles: New Ideas for Resource Cycles in Germany
25.06.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>