Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Fishy lawnmowers' help save Pacific corals

11.11.2011
Can fish save coral reefs from dying? UC Santa Barbara researchers have found one case where fish have helped coral reefs to recover from cyclones and predators.

Coral reefs worldwide are increasingly disturbed by environmental events that are causing their decline, yet some coral reefs recover. UCSB researchers have discovered that the health of coral reefs in the South Pacific island of Moorea, in French Polynesia, may be due to protection by parrotfish and surgeonfish that eat algae, along with the protection of reefs that shelter juvenile fish.

The findings are published in a recent issue of the journal PLoS ONE. The UCSB research team is part of the Moorea Coral Reef Long-Term Ecological Research (MCR LTER) project, funded by the National Science Foundation.

In many cases, especially in the case of severely damaged reefs in the Caribbean, coral reefs that suffer large losses of live coral often become overgrown with algae and never return to a state where the reefs are again largely covered by live coral. In contrast, the reefs surrounding Moorea experienced large losses of live coral in the past –– most recently in the early 1980's –– and have returned each time to a system dominated by healthy, live corals.

"We wanted to know why Moorea's reefs seem to act differently than other reefs," said Tom Adam, first author, research associate with MCR LTER, and postdoctoral fellow at UCSB's Marine Science Institute. "Specifically, we wanted to know what ecological factors might be responsible for the dramatic patterns of recovery observed in Moorea."

The research team was surprised by its findings. The biomass of herbivores on the reef –– fish and other animals that eat plants like algae –– increased dramatically following the loss of live coral. "What was surprising to us was that the numbers of these species also increased dramatically," said Andrew Brooks, co-author, deputy program director of MCR LTER, and associate project scientist with MSI. "We were not simply seeing a case of bigger, fatter fishes –– we were seeing many more parrotfishes and surgeonfishes, all of whom happened to be bigger and fatter. We wanted to know where these new fishes were coming from."

The researchers also found that not all of the coral reefs around Moorea were affected equally by an outbreak of predatory crown-of-thorns sea stars or by cyclones. The crown-of-thorns sea stars did eat virtually all of the live coral on the barrier reef –– the reef that separates the shallow lagoons from the deeper ocean. However, neither the sea stars nor the cyclones had much impact on the corals growing on the fringing reef –– the reef that grows against the island.

"We discovered that these fringing reefs act as a nursery ground for baby fishes, most notably herbivorous fishes," said Brooks. "With more food available in the form of algae, the survivorship of these baby parrotfishes and surgeonfishes increased, providing more individuals to help control the algae on the fore reef. In effect, the large numbers of parrotfishes and surgeonfishes are acting like thousands of fishy lawnmowers, keeping the algae cropped down to levels low enough that there is still space for new baby corals to settle onto the reef and begin to grow."

A major reason the reefs in the Caribbean do not recover after serious disturbances is because these reefs lack healthy populations of parrotfishes and surgeonfishes, due to the effects of overfishing, explained Adam. "Without these species to help crop the algae down, these reefs quickly become overgrown with algae, a situation that makes it very hard for corals to re-establish themselves," he said.

Managers have tried to reverse the trend of overfishing through the creation of Marine Protected Areas (MPAs), where fishing is severely restricted or prohibited. "Our results suggest that this strategy may not be enough to reverse the trend of coral reefs becoming algal reefs," said Brooks. "Our new and very novel results suggest that it also is vital to protect the fringing reefs that serve as nursery grounds. Without these nursery grounds, populations of parrotfishes and surgeonfishes can't respond to increasing amounts of algae on the reefs by outputting more baby herbivores."

In short, the research team found that by using MPAs, managers can help protect adult fish, producing bigger, fatter fish. "But if you don't protect the nursery habitat –– the babies produced by these bigger fish, or by fish in other, nearby areas –– you can't increase the overall numbers of the important algae-eating fish on the reef," said Brooks.

According to the scientists, it appears that Moorea's reefs may recover. "One final bit of good news is that we are seeing tens of thousands of baby corals, some less than a half-inch in diameter, on the fore reefs surrounding Moorea," said Brooks.

MCR researchers will follow the coral reef recovery process over the next decade or more, in search of additional information that can aid managers of the world's coral reefs.

Additional co-authors are Russell J. Schmitt and Sally J. Holbrook of UCSB's Marine Science Institute and the Department of Ecology, Evolution, and Marine Biology; Peter J. Edmunds and Robert C. Carpenter of California State University, Northridge; and Giacomo Bernardi, of UC Santa Cruz.

Gail Gallessich | EurekAlert!
Further information:
http://www.ucsb.edu

More articles from Ecology, The Environment and Conservation:

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

nachricht 100 % Organic Farming in Bhutan – a Realistic Target?
15.06.2018 | Humboldt-Universität zu Berlin

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>