Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Waterjets Could Propel LCS to Greater Speeds

06.02.2013
The Navy’s fifth Littoral Combat Ship (LCS), Milwaukee, will be the first to benefit from new high-power density waterjets aimed at staving off rudder and propeller damage experienced on high-speed ships.
The product of an Office of Naval Research (ONR) Future Naval Capabilities (FNC) program, the waterjets arrived last month at the Marinette Marine shipyard in Wisconsin, where Milwaukee (LCS 5) is under construction.

“We believe these waterjets are the future,” said Dr. Ki-Han Kim, program manager in ONR’s Ship Systems and Engineering Research Division. “Anything that we can do to keep ships ready to go will ultimately benefit our warfighters.”

Chief of Naval Operations Adm. Jonathan Greenert’s 2013-2017 Navigation Plan calls for fielding improved ships to support counterterrorism and irregular warfare missions at sea and ashore. The LCS will play a big role in the Navy’s plan as a modular, adaptable vessel for use against diesel submarines, littoral mines and attacks by small surface craft.

Developed by Rolls-Royce Naval Marine in Walpole, Mass., in collaboration with ONR and Naval Surface Warfare Center, Carderock Division, the new Axial-Flow Waterjet Mk-1 can move nearly half a million gallons of seawater per minute, providing more thrust per unit than current commercial waterjets. Four of the new waterjets will propel the LCS to speeds greater than 40 knots.

Researchers believe the smaller, more efficient waterjets will help the LCS avoid excessive maintenance costs associated with cavitation — a phenomenon that occurs when changes in pressure create air bubbles on rotating machinery, such as marine propellers. Repeated occurrences can cause whole chunks of metal to wear away, leading to frequent repairs and replacements.

The waterjets’ new design could increase their lifespan between repairs.

The FNC program that oversaw development of this technology proved to be as adaptable as LCS. The waterjets originally were slated to benefit another ship program that was discontinued. Instead of cancelling the waterjets program, officials regrouped and shifted their focus to designing a product that would improve the performance of LCS.

ONR’s FNC program saves taxpayer money by streamlining processes to deliver cutting-edge products within five years. The waterjets project began in 2007, and the delivery last month to the shipyard marked its successful completion.

Next up for the waterjets will be full-scale sea trials on Milwaukee (LCS 5), expected to occur in the next 24 months.

Eventually, the waterjets could end up on 10 LCS under contract to be built by Lockheed Martin.

About the Office of Naval Research

The Department of the Navy’s Office of Naval Research (ONR) provides the science and technology necessary to maintain the Navy and Marine Corps’ technological advantage. Through its affiliates, ONR is a leader in science and technology with engagement in 50 states, 70 countries, 1,035 institutions of higher learning and 914 industry partners. ONR employs approximately 1,400 people, comprising uniformed, civilian and contract personnel, with additional employees at the Naval Research Lab in Washington, D.C.
Office of Naval Research
Corporate Strategic Communications
875 N. Randolph St., #1225-D
Arlington, Va., 22203-1771
Office: (703) 696-5031
Fax: (703) 696-5940
E-mail: onrcsc@onr.navy.mil
Web: www.onr.navy.mil
Facebook: www.facebook.com/officeofnavalresearch

Peter Vietti | EurekAlert!
Further information:
http://www.onr.navy.mil

More articles from Machine Engineering:

nachricht More functionalities: Microstructuring large surfaces with a UV-laser system
05.07.2018 | Fraunhofer-Institut für Lasertechnik ILT

nachricht A factory to go
04.07.2018 | Fraunhofer Institute for Manufacturing Engineering and Automation IPA

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>