Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

“TwoCure”: the New Dimension in Resin-Based 3D Printing

11.10.2018

The Fraunhofer Institute for Laser Technology ILT has taken its “TwoCure” process to the next level by developing it into an industry-ready machine technology. The team of scientists from Aachen, Germany will be presenting their “TwoCure” system at formnext in Frankfurt am Main from November 13 to 16. The new technique uses resin-based 3D printing to produce large numbers of plastic components without support structures in an automated process.

Sometimes systems have an inherent flaw that causes manufacturing difficulties. In the case of resin-based 3D printing, most users would immediately point to support structures as a particularly irritating problem. Supports require additional preparation in the form of CAD planning, additionally they make post-processing harder by giving users the tricky task of removing them from the product after printing.


At this year's formnext, Fraunhofer ILT will be presenting a “TwoCure” prototype machine for resin-based, support-free 3D printing of plastic components.

© Fraunhofer ILT, Aachen, Germany


By melting at room temperature, the additively manufactured plastic components are released from the frozen blocks.

© Fraunhofer ILT, Aachen, Germany

That increases the quota of manual work and generates avoidable waste. Much like stereolithography, the “TwoCure” process works using photolithographic light exposure that causes liquid resins to harden layer by layer. Supports typically play an essential role, because the plastic structures – many of which are delicate – have to be supported through contact with a platform.

Free-floating Components

As part of a government-funded project, researchers from Fraunhofer ILT have now come up with an alternative: “TwoCure”, a process in which liquid resin is applied layer by layer to previously solidified resin. Based on a similar principle to a projector, a LED light unit projects the component’s layered geometry into a liquid resin bath and the polymer hardens in the areas that are illuminated.

The other areas of resin solidify through cooling, leaving the cured structures floating freely without supports within the total volume. This enables the entire 3D build volume to be used for printing, rather than just the machine’s build platform.

Interplay of Light and Cold

The developers from Aachen rely on a clever interplay of light and cold, curing the component chemically by means of light and solidifying the surrounding material thermally by means of cold. “The material is applied warm and then irreversibly cured by light,” says Holger Leonards, project manager “TwoCure” at Fraunhofer ILT.

“At the same time the cooled machine ensures that whatever component we are creating layer by layer freezes to form a block together with the resin that has solidified like wax.” This wax-like resin can then be liquefied at room temperature, essentially draining off the support material. All that remains are the 3D printed components, which just need to be briefly cleaned and post-cured.

It was this hybrid technology that prompted the researchers to call the process “TwoCure”, and they have now created a corresponding machine that currently offers a capacity of approximately one liter and a lateral resolution of about 50 micrometers (pixel pitch). The technology is of particular interest to companies that produce numerous individual small plastic components or small batches of up to 1,000 pieces.

In the future, for example, it should be possible to use this technology to produce several hundred individual pieces a day on a single machine, whether these are earmolds for hearing aids, molds for jewelry making, or small batches of plastic components. Currently, this level of throughput would require several 3D printers. “We hope that our “TwoCure” technology will pave the way for the additive production of plastic components with a single machine, eliminating the need for masses of machinery,“ says Leonards.

Economical Small Batch Production

As well as enabling 3D printing without supports, the new process also allows users to position components anywhere they like without requiring any platform contact. In other words, the 3D components can be built directly at any point within the build volume – and they no longer have to be supported on or connected to the platform.

Because the total build volume is being used more efficiently, each 3D printing job can create significantly more parts. “Another of the machine's benefits is that it requires very little preparatory and post-processing work,” says Leonards. “Once the 3D printing process is finished, the components are essentially ready for use because there are no supports to remove. The only steps that remain are cleaning and post-curing, both of which can easily be incorporated into an automated process chain.”

Handling is also simplified because the machine automatically ejects the frozen block into a rack so that it can move straight on to producing the next block. “Our plan is to enable users to add 3D printing jobs to a virtual queue that can then be processed around the clock in shifts that run without any human intervention,” says Leonards, explaining what lies ahead. “In the long term, that opens up the possibility of carrying out additive manufacturing on a 24/7 operation basis.”

Hunt for Cooperation Partners

With their first production-ready machine under their belt, the researchers are now looking to refine the process. Fraunhofer ILT is currently looking for additional cooperation partners that could help the team of researchers with upcoming steps such as evaluating the process in a live production environment, adapting software and optimizing materials. Any interested parties would be well advised to contact the Fraunhofer ILT experts, for example by visiting Fraunhofer’s joint Booth E70 in Hall 3.0 at formnext, which will take place from November 13 to 16, 2018 in Frankfurt am Main.

Wissenschaftliche Ansprechpartner:

Dipl.-Chem. Holger Leonards
Gruppe Biofabrikation
Telefon +49 241 8906-601
holger.leonards@ilt.fraunhofer.de

Dr. Oliver Nottrodt
Gruppe Prozesssensorik und Systemtechnik
Telefon +49 241 8906-625
oliver.nottrodt@ilt.fraunhofer.de

Claudia Ellebracht
Innovationsmanagement
Telefon +49 241 8906-8348
claudia.ellebracht@ilt.fraunhofer.de

Weitere Informationen:

http://www.ilt.fraunhofer.de/en

Petra Nolis M.A. | Fraunhofer-Institut für Lasertechnik ILT

Further reports about: 3D 3D Printing 3D printers CAD Fraunhofer-Institut ILT Lasertechnik Printing TwoCure plastic components

More articles from Machine Engineering:

nachricht AddSteel project: new steel materials for 3D printing
26.07.2019 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Novel approach to self-assembling mobile micromachines
25.06.2019 | Max-Planck-Institut für Intelligente Systeme

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A miniature stretchable pump for the next generation of soft robots

Soft robots have a distinct advantage over their rigid forebears: they can adapt to complex environments, handle fragile objects and interact safely with humans. Made from silicone, rubber or other stretchable polymers, they are ideal for use in rehabilitation exoskeletons and robotic clothing. Soft bio-inspired robots could one day be deployed to explore remote or dangerous environments.

Most soft robots are actuated by rigid, noisy pumps that push fluids into the machines' moving parts. Because they are connected to these bulky pumps by tubes,...

Im Focus: Vehicle Emissions: New sensor technology to improve air quality in cities

Researchers at TU Graz are working together with European partners on new possibilities of measuring vehicle emissions.

Today, air pollution is one of the biggest challenges facing European cities. As part of the Horizon 2020 research project CARES (City Air Remote Emission...

Im Focus: Self healing robots that "feel pain"

Over the next three years, researchers from the Vrije Universiteit Brussel, University of Cambridge, École Supérieure de Physique et de Chimie Industrielles de la ville de Paris (ESPCI-Paris) and Empa will be working together with the Dutch Polymer manufacturer SupraPolix on the next generation of robots: (soft) robots that ‘feel pain’ and heal themselves. The partners can count on 3 million Euro in support from the European Commission.

Soon robots will not only be found in factories and laboratories, but will be assisting us in our immediate environment. They will help us in the household, to...

Im Focus: Scientists create the world's thinnest gold

Scientists at the University of Leeds have created a new form of gold which is just two atoms thick - the thinnest unsupported gold ever created.

The researchers measured the thickness of the gold to be 0.47 nanometres - that is one million times thinner than a human finger nail. The material is regarded...

Im Focus: Study on attosecond timescale casts new light on electron dynamics in transition metals

An international team of scientists involving the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) in Hamburg has unraveled the light-induced electron-localization dynamics in transition metals at the attosecond timescale. The team investigated for the first time the many-body electron dynamics in transition metals before thermalization sets in. Their work has now appeared in Nature Physics.

The researchers from ETH Zurich (Switzerland), the MPSD (Germany), the Center for Computational Sciences of University of Tsukuba (Japan) and the Center for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The power of thought – the key to success: CYBATHLON BCI Series 2019

16.08.2019 | Event News

4th Hybrid Materials and Structures 2020 28 - 29 April 2020, Karlsruhe, Germany

14.08.2019 | Event News

What will the digital city of the future look like? City Science Summit on 1st and 2nd October 2019 in Hamburg

12.08.2019 | Event News

 
Latest News

Working out why plants get sick

16.08.2019 | Life Sciences

Newfound superconductor material could be the 'silicon of quantum computers'

16.08.2019 | Physics and Astronomy

Stanford develops wireless sensors that stick to the skin to track our health

16.08.2019 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>