Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

“TwoCure”: the New Dimension in Resin-Based 3D Printing

11.10.2018

The Fraunhofer Institute for Laser Technology ILT has taken its “TwoCure” process to the next level by developing it into an industry-ready machine technology. The team of scientists from Aachen, Germany will be presenting their “TwoCure” system at formnext in Frankfurt am Main from November 13 to 16. The new technique uses resin-based 3D printing to produce large numbers of plastic components without support structures in an automated process.

Sometimes systems have an inherent flaw that causes manufacturing difficulties. In the case of resin-based 3D printing, most users would immediately point to support structures as a particularly irritating problem. Supports require additional preparation in the form of CAD planning, additionally they make post-processing harder by giving users the tricky task of removing them from the product after printing.


At this year's formnext, Fraunhofer ILT will be presenting a “TwoCure” prototype machine for resin-based, support-free 3D printing of plastic components.

© Fraunhofer ILT, Aachen, Germany


By melting at room temperature, the additively manufactured plastic components are released from the frozen blocks.

© Fraunhofer ILT, Aachen, Germany

That increases the quota of manual work and generates avoidable waste. Much like stereolithography, the “TwoCure” process works using photolithographic light exposure that causes liquid resins to harden layer by layer. Supports typically play an essential role, because the plastic structures – many of which are delicate – have to be supported through contact with a platform.

Free-floating Components

As part of a government-funded project, researchers from Fraunhofer ILT have now come up with an alternative: “TwoCure”, a process in which liquid resin is applied layer by layer to previously solidified resin. Based on a similar principle to a projector, a LED light unit projects the component’s layered geometry into a liquid resin bath and the polymer hardens in the areas that are illuminated.

The other areas of resin solidify through cooling, leaving the cured structures floating freely without supports within the total volume. This enables the entire 3D build volume to be used for printing, rather than just the machine’s build platform.

Interplay of Light and Cold

The developers from Aachen rely on a clever interplay of light and cold, curing the component chemically by means of light and solidifying the surrounding material thermally by means of cold. “The material is applied warm and then irreversibly cured by light,” says Holger Leonards, project manager “TwoCure” at Fraunhofer ILT.

“At the same time the cooled machine ensures that whatever component we are creating layer by layer freezes to form a block together with the resin that has solidified like wax.” This wax-like resin can then be liquefied at room temperature, essentially draining off the support material. All that remains are the 3D printed components, which just need to be briefly cleaned and post-cured.

It was this hybrid technology that prompted the researchers to call the process “TwoCure”, and they have now created a corresponding machine that currently offers a capacity of approximately one liter and a lateral resolution of about 50 micrometers (pixel pitch). The technology is of particular interest to companies that produce numerous individual small plastic components or small batches of up to 1,000 pieces.

In the future, for example, it should be possible to use this technology to produce several hundred individual pieces a day on a single machine, whether these are earmolds for hearing aids, molds for jewelry making, or small batches of plastic components. Currently, this level of throughput would require several 3D printers. “We hope that our “TwoCure” technology will pave the way for the additive production of plastic components with a single machine, eliminating the need for masses of machinery,“ says Leonards.

Economical Small Batch Production

As well as enabling 3D printing without supports, the new process also allows users to position components anywhere they like without requiring any platform contact. In other words, the 3D components can be built directly at any point within the build volume – and they no longer have to be supported on or connected to the platform.

Because the total build volume is being used more efficiently, each 3D printing job can create significantly more parts. “Another of the machine's benefits is that it requires very little preparatory and post-processing work,” says Leonards. “Once the 3D printing process is finished, the components are essentially ready for use because there are no supports to remove. The only steps that remain are cleaning and post-curing, both of which can easily be incorporated into an automated process chain.”

Handling is also simplified because the machine automatically ejects the frozen block into a rack so that it can move straight on to producing the next block. “Our plan is to enable users to add 3D printing jobs to a virtual queue that can then be processed around the clock in shifts that run without any human intervention,” says Leonards, explaining what lies ahead. “In the long term, that opens up the possibility of carrying out additive manufacturing on a 24/7 operation basis.”

Hunt for Cooperation Partners

With their first production-ready machine under their belt, the researchers are now looking to refine the process. Fraunhofer ILT is currently looking for additional cooperation partners that could help the team of researchers with upcoming steps such as evaluating the process in a live production environment, adapting software and optimizing materials. Any interested parties would be well advised to contact the Fraunhofer ILT experts, for example by visiting Fraunhofer’s joint Booth E70 in Hall 3.0 at formnext, which will take place from November 13 to 16, 2018 in Frankfurt am Main.

Wissenschaftliche Ansprechpartner:

Dipl.-Chem. Holger Leonards
Gruppe Biofabrikation
Telefon +49 241 8906-601
holger.leonards@ilt.fraunhofer.de

Dr. Oliver Nottrodt
Gruppe Prozesssensorik und Systemtechnik
Telefon +49 241 8906-625
oliver.nottrodt@ilt.fraunhofer.de

Claudia Ellebracht
Innovationsmanagement
Telefon +49 241 8906-8348
claudia.ellebracht@ilt.fraunhofer.de

Weitere Informationen:

http://www.ilt.fraunhofer.de/en

Petra Nolis M.A. | Fraunhofer-Institut für Lasertechnik ILT

Further reports about: 3D 3D Printing 3D printers CAD Fraunhofer-Institut ILT Lasertechnik Printing TwoCure plastic components

More articles from Machine Engineering:

nachricht Additive Manufacturing: Budget-friendly retrofit of module for wire-based laser deposition welding
05.10.2018 | Fraunhofer-Institut für Produktionstechnologie IPT

nachricht More functionalities: Microstructuring large surfaces with a UV-laser system
05.07.2018 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

Im Focus: Dynamics of individual proteins

New measurement method allows researchers to precisely follow the movement of individual molecules over long periods of time

The function of proteins – the molecular tools of the cell – is governed by the interplay of their structure and dynamics. Advances in electron microscopy have...

Im Focus: Researchers discover how fatal biofilms form

By severely curtailing the effects of antibiotics, the formation of organized communities of bacterial cells known as biofilms can be deadly during surgeries and in urinary tract infections. Yale researchers have just come a lot closer to understanding how these biofilms develop, and potentially how to stop them.

Biofilms form when bacterial cells gather and develop structures that bond them in a gooey substance. This glue can protect the cells from the outside world...

Im Focus: Flying High with VCSEL Heating

Additive manufacturing processes are booming, with the rapid growth of the formnext trade fair a clear indication of this. At formnext 2018, the Fraunhofer Institute for Laser Technology ILT will be showing a new process in which the component in the powder bed is heated with laser diodes. As a result, distortion can be reduced, taller parts generated and new materials used.

In just three years, formnext has established itself as the industry meeting place to get the latest on additive manufacturing (AM) processes. With 470...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

Major Project: The New Silk Road

01.10.2018 | Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

 
Latest News

New NIST method measures 3D polymer processing precisely

10.10.2018 | Materials Sciences

A RUDN chemist created nanoreactors to synthesize organic substances under visible light

10.10.2018 | Life Sciences

A new path to solving a longstanding fusion challenge

10.10.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>