Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Twisted String Actuator Imparts Robotic Hands with a Strong Grip

19.04.2010
Future robots may be evacuating people out of damaged buildings after earthquakes or helping elderly persons in the household.

Imparting robots with the grip of their human counterpart demands hands capable of carrying heavy objects as well as placing them carefully and gently.


Researchers at Saarland University and Bologna University (Professor Claudio Melchiorri) developed a twisted string actuator for robotic hands. Bologna University

Researchers at Saarland University developed a twisted string actuator for robotic hands that is capable of generating tremendous forces by means of a simple principle, while requiring little space. The catapults of the ancient Romans serve as a model for the artificial muscles.

The new miniature drive will be presented by the scientists at the Hannover Fair from April 19th to 24th . The Saarland research booth C44 is located in Hall 2.

Already the Romans used strings and tendon bundles to catapult enormous stones on their enemies. Back then the strings were also twisted about their own axis, setting free immense forces when released. The research group of Hartmut Janocha, professor of Process Automation at Saarland University, took this archetype for the modelling of robot hands, which should be able to grip powerfully yet gently.

"Humans move their hands using muscles in the forearm. That is why we were searching for a possibility to control and activate the fingers with the smallest possible components inside the forearm of the robot", said Professor Janocha, describing the challenge they faced. Using strings twisted by small, fast turning motors, the researchers can now generate high forces in a compact space.

"Extremely resilient polymer strings make it possible to hoist a load of five kilograms over 30 millimetres in less than a second, using an electric motor together with a string of 20 centimetres length", explained Professor Janocha. Each finger of the robotic hand developed by the research team around Professor Claudio Melchiorri at Bologna University, which like its human archetype is comprised of three phalanges, can be controlled delicately with the individual tendons. Compared with conventional solutions in which strings are wound around a spool, this new solution is significantly more compact. The miniature electric motors will be integrated within the fore-arm of the robot, making it even more similar to the human arm. "The miniature motors run at high speed and with a low torque of about 5 Newton-millimetres. The combination of compact motors with twisted strings can be advantageous in other applications", says Professor Janocha.

The research on robotic hands in Saarbrücken is part of the European funded project DEXMART, in which eight universities and research institutes from Germany, France, Italy and Great Britain participate. The goal of the project is to impart robots with specific properties so that they can assist persons in the household, in operating rooms or industrial settings. Starting in 2008, the European Union is investing 6.3 million Euro over four years in the research project.

For more information, contact:
Chris May
Laboratory of Process Automation (LPA)
Saarland University
Tel. +49 (0) 681 / 302-4188
Tel. +49 (0) 511 / 89 49 71 01 (telephone at exhibition booth)
c.may@lpa.uni-saarland.de

Friederike Meyer zu Tittingdorf | idw
Further information:
http://www.dexmart.eu
http://www.lpa.uni-saarland.de
http://www.uni-saarland.de/pressefotos

Further reports about: Actuator Automation Grip Robotic Twisted electric motor robotic hand robotic hands

More articles from Machine Engineering:

nachricht "We're hoping for up to 600 kilometers per hour"
15.06.2018 | Technische Universität München

nachricht Flow probes from the 3D printer
25.05.2018 | Technische Universität München

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superconducting vortices quantize ordinary metal

Russian researchers together with their French colleagues discovered that a genuine feature of superconductors -- quantum Abrikosov vortices of supercurrent -- can also exist in an ordinary nonsuperconducting metal put into contact with a superconductor. The observation of these vortices provides direct evidence of induced quantum coherence. The pioneering experimental observation was supported by a first-ever numerical model that describes the induced vortices in finer detail.

These fundamental results, published in the journal Nature Communications, enable a better understanding and description of the processes occurring at the...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Rapid water formation in diffuse interstellar clouds

25.06.2018 | Physics and Astronomy

Using tree-fall patterns to calculate tornado wind speed

25.06.2018 | Earth Sciences

'Stealth' material hides hot objects from infrared eyes

25.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>