Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Short Laser Pulses for Material Deposition with Cold Spray Technology

13.04.2015

In a new EU-funded project, ultra-short laser pulses modify material surfaces so that metal powder from a cold gas jet can adhere more easily. With Cold Spray Technology, coating lightweight materials such as plastics or carbon fiber reinforced plastic (CFRP) becomes significantly simpler. The EU research project “Efficient Manufacturing of Laser-Assisted Cold-Sprayed Components” (EMLACS) unites five partners from industry and research who want to extend low-pressure cold gas spraying to new applications.

Cold Gas Spraying is an additive manufacturing process in which metal powders are accelerated to supersonic speeds to adhere to material surfaces. The material deposition process is based on the kinetic energy of the particles.


High-speed deposition of copper on aluminum segments.

Picture source: Dycomet

A thick layer (>0.5 mm) is deposited with no thermal defect in the substrate. The deposited layer can be directly machined or reworked. The main advantages of low-pressure cold gas spraying are the lack of heat input, high processing speed, and low investment cost. New material combinations are especially promising in automotive and aeronautics.

The main challenge in this technology is the adherence of the first layer on the workpiece. The aim of the EU research project “Efficient Manufacturing of Laser-Assisted Cold-Sprayed Components” (EMLACS) will improve adhesion on different substrates by using high-speed laser surface structuring with integrated ns and ps lasers with low-pressure cold gas spraying. New material combinations can then be developed for industrial use.

The deposition of metallic materials (Cu or Al) on carbon fiber and glass fiber reinforced plastic (CFRP and GFRP) substrates is being investigated, which has already created significant interest in the aeronautic and automotive industries. In addition, the new technology can be applied in novel ways in electronics manufacturing. As an example, Cold Gas Spraying may deposit a copper layer on a non-conducting housing for fanless heat removal from electronic components.

The project team is composed of French, Dutch, and German partners. Dycomet Europe (NL) brings cold gas spraying expertise, Edgewave (GER) delivers high-power short-pulsed laser technology, and Industrial Laser Systems (FR) is acting as the system integrator and coordinator of the project. Research teams from Université de Technologie de Belfort-Montbéliard (UTBM, FR) Fraunhofer-Institute for Laser Technology ILT (GER) are developing the process.
The EMLACS project (reference number 606567) has been running since June 2014 under Research for SMEs - FP7-SME-2013 and has been funded by the Research Executive Agency (REA) for 24 months.

Contact

Manuel Mendes
Industrial Laser Systems
Telephone +33 1 55950950
mmendes@industrial-laser-systems.com
21-23 rue Aristide Briand, 92170 Vanves, France
www.industrial-laser-systems.com

Dr.-Ing. Wolfgang Knapp
Head of the Coopération Laser Franco-Allemande CLFA
Telephone +33 2 2844 3711
wolfgang.knapp@ilt.fraunhofer.de
Fraunhofer-Institute for Laser Technology ILT
Steinbachstraße 15
52074 Aachen, Germany

Weitere Informationen:

http://www.emlacs.eu
http://www.ilt.fraunhofer.de

Petra Nolis | Fraunhofer-Institut für Lasertechnik ILT

Further reports about: Fraunhofer-Institut ILT Industrial Laser Lasertechnik Pulses Spray Technology cold gas fiber spraying substrates

More articles from Machine Engineering:

nachricht More functionalities: Microstructuring large surfaces with a UV-laser system
05.07.2018 | Fraunhofer-Institut für Lasertechnik ILT

nachricht A factory to go
04.07.2018 | Fraunhofer Institute for Manufacturing Engineering and Automation IPA

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

NSF-supported researchers to present new results on hurricanes and other extreme events

19.07.2018 | Earth Sciences

Scientists uncover the role of a protein in production & survival of myelin-forming cells

19.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>