Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Short Laser Pulses for Material Deposition with Cold Spray Technology

13.04.2015

In a new EU-funded project, ultra-short laser pulses modify material surfaces so that metal powder from a cold gas jet can adhere more easily. With Cold Spray Technology, coating lightweight materials such as plastics or carbon fiber reinforced plastic (CFRP) becomes significantly simpler. The EU research project “Efficient Manufacturing of Laser-Assisted Cold-Sprayed Components” (EMLACS) unites five partners from industry and research who want to extend low-pressure cold gas spraying to new applications.

Cold Gas Spraying is an additive manufacturing process in which metal powders are accelerated to supersonic speeds to adhere to material surfaces. The material deposition process is based on the kinetic energy of the particles.


High-speed deposition of copper on aluminum segments.

Picture source: Dycomet

A thick layer (>0.5 mm) is deposited with no thermal defect in the substrate. The deposited layer can be directly machined or reworked. The main advantages of low-pressure cold gas spraying are the lack of heat input, high processing speed, and low investment cost. New material combinations are especially promising in automotive and aeronautics.

The main challenge in this technology is the adherence of the first layer on the workpiece. The aim of the EU research project “Efficient Manufacturing of Laser-Assisted Cold-Sprayed Components” (EMLACS) will improve adhesion on different substrates by using high-speed laser surface structuring with integrated ns and ps lasers with low-pressure cold gas spraying. New material combinations can then be developed for industrial use.

The deposition of metallic materials (Cu or Al) on carbon fiber and glass fiber reinforced plastic (CFRP and GFRP) substrates is being investigated, which has already created significant interest in the aeronautic and automotive industries. In addition, the new technology can be applied in novel ways in electronics manufacturing. As an example, Cold Gas Spraying may deposit a copper layer on a non-conducting housing for fanless heat removal from electronic components.

The project team is composed of French, Dutch, and German partners. Dycomet Europe (NL) brings cold gas spraying expertise, Edgewave (GER) delivers high-power short-pulsed laser technology, and Industrial Laser Systems (FR) is acting as the system integrator and coordinator of the project. Research teams from Université de Technologie de Belfort-Montbéliard (UTBM, FR) Fraunhofer-Institute for Laser Technology ILT (GER) are developing the process.
The EMLACS project (reference number 606567) has been running since June 2014 under Research for SMEs - FP7-SME-2013 and has been funded by the Research Executive Agency (REA) for 24 months.

Contact

Manuel Mendes
Industrial Laser Systems
Telephone +33 1 55950950
mmendes@industrial-laser-systems.com
21-23 rue Aristide Briand, 92170 Vanves, France
www.industrial-laser-systems.com

Dr.-Ing. Wolfgang Knapp
Head of the Coopération Laser Franco-Allemande CLFA
Telephone +33 2 2844 3711
wolfgang.knapp@ilt.fraunhofer.de
Fraunhofer-Institute for Laser Technology ILT
Steinbachstraße 15
52074 Aachen, Germany

Weitere Informationen:

http://www.emlacs.eu
http://www.ilt.fraunhofer.de

Petra Nolis | Fraunhofer-Institut für Lasertechnik ILT

Further reports about: Fraunhofer-Institut ILT Industrial Laser Lasertechnik Pulses Spray Technology cold gas fiber spraying substrates

More articles from Machine Engineering:

nachricht How interstitial ordering affects high-strength steels
14.05.2020 | Max-Planck-Institut für Eisenforschung GmbH

nachricht Reprogramming of macroscopic self-assembly with dynamic boundaries
14.05.2020 | Max-Planck-Institut für Intelligente Systeme

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Restoring vision by gene therapy

Latest scientific findings give hope for people with incurable retinal degeneration

Humans rely dominantly on their eyesight. Losing vision means not being able to read, recognize faces or find objects. Macular degeneration is one of the major...

Im Focus: Small Protein, Big Impact

In meningococci, the RNA-binding protein ProQ plays a major role. Together with RNA molecules, it regulates processes that are important for pathogenic properties of the bacteria.

Meningococci are bacteria that can cause life-threatening meningitis and sepsis. These pathogens use a small protein with a large impact: The RNA-binding...

Im Focus: K-State study reveals asymmetry in spin directions of galaxies

Research also suggests the early universe could have been spinning

An analysis of more than 200,000 spiral galaxies has revealed unexpected links between spin directions of galaxies, and the structure formed by these links...

Im Focus: New measurement exacerbates old problem

Two prominent X-ray emission lines of highly charged iron have puzzled astrophysicists for decades: their measured and calculated brightness ratios always disagree. This hinders good determinations of plasma temperatures and densities. New, careful high-precision measurements, together with top-level calculations now exclude all hitherto proposed explanations for this discrepancy, and thus deepen the problem.

Hot astrophysical plasmas fill the intergalactic space, and brightly shine in stellar coronae, active galactic nuclei, and supernova remnants. They contain...

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

New image of a cancer-related enzyme in action helps explain gene regulation

05.06.2020 | Life Sciences

Silicon 'neurons' may add a new dimension to computer processors

05.06.2020 | Physics and Astronomy

Protecting the Neuronal Architecture

05.06.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>