Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Satellite-based Laser Measurement Technology against Climate Change

17.01.2017

In the last few years, the Fraunhofer Institute for Laser Technology ILT has been developing satellite-based laser beam sources for climate research. The project »ALISE« (Diode-pumped Alexandrite Laser Instrument for next generation Satellite-based Earth observation) started in August 2016 and will run until July 2018. In cooperation with the Leibniz Institute for Atmospheric Physics (IAP) and Airbus Defence & Space, the Fraunhofer ILT will be investigating the technical feasibility and the possible applications of a novel laser system for satellite-based observation of the world's climate.

The fight against global climate change poses one of the greatest challenges of the coming decades. To develop effective measures against global warming, scientists need climate models that reliably represent interrelationships in the atmosphere. Currently, there is insufficient data about such relationships at high altitude (mesosphere), where crucial processes for global air circulation occur.


Picture 1: Lab demonstrator of a diode-pumped alexandrite laser for climate-relevant measuring in high-altitude atmosphere.

© Fraunhofer ILT, Aachen, Germany

For the measurement of temperature and wind speed at this altitude, climate researchers rely on the modern resonance-lidar process. However, due to the complexity and the weight, these laser measuring systems are being used almost exclusively on the ground.

The work in ALISE constitutes the first step in developing a satellite-based observation system that enables wind and temperature conditions to be measured temporally and spatially in high-resolution in the mesosphere.

To accomplish this, the efficiency of the laser beam source, an alexandrite laser, needs to be increased by using laser diodes as a pump source. Furthermore, complexity and component weight will be reduced so that the requirements for space-based missions can be met.

In order to take advantage of laser measurement technology in satellite-based Earth observation, the scientists from Aachen have applied their many years of experience and expertise to developing laser beam sources and optical components for atmospheric measurements.

They were already able to demonstrate this, among others, in the Franco-German climate mission »MERLIN« and the »CHARM-F« project. The CHARM-F system recently successfully completed its first flight on the German research aircraft HALO (High Altitude and Long Range Research Aircraft) of the German Aerospace Center (DLR).

ALISE is supervised by the DLR, while the project budget is entirely provided by the Federal Ministry of Economic Affairs and Energy (FKZ: 50RP1605).

Please visit the DLR-website for additional information about the ALISE project: www.dlr-innospace.de/startseite/gefoerderte-projekte/alise/

Contact

Dr. rer. nat. Michael Strotkamp
Nonlinear Optics and Tunable Lasers Group
Phone +49 241 8906-132
michael.strotkamp@ilt.fraunhofer.de

Dipl.-Ing. Hans-Dieter Hoffmann
Head of the Competence Area Lasers and Laser Optics
Phone +49 241 8906-206
hansdieter.hoffmann@ilt.fraunhofer.de

Weitere Informationen:

http://www.ilt.fraunhofer.de/en

Petra Nolis | Fraunhofer-Institut für Lasertechnik ILT

More articles from Machine Engineering:

nachricht More functionalities: Microstructuring large surfaces with a UV-laser system
05.07.2018 | Fraunhofer-Institut für Lasertechnik ILT

nachricht A factory to go
04.07.2018 | Fraunhofer Institute for Manufacturing Engineering and Automation IPA

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>