Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Piezohydraulic Actuator: A Powerful Midget

09.10.2014

Researchers at Siemens have developed a small but powerful piezo­hydraulic actuator. Although it is only about nine centimeters long, it can apply a force of more than 150 newtons - equivalent to a weight of 15 kilograms. Such actuators are used to operate valves and flaps, for example, and can also be employed in robots.

The concept combines piezomechanics with hydraulics. A voltage causes tiny deflections in a piezoelectric crystal and an internal hydraulic system combines these small movements to generate a rise of two centimeters. Purely electromagnetic actuators loose efficiency if they are very small.

Another advantage of the new actuator is its metallic enclosure, which ensures that all of the required hydraulic fluid is contained in the system so that the actuator only has to be supplied with electricity and not with fluid. Moreover, the actuator is protected against external influences such as dust, humidity, and chemicals.

Piezoelectric crystals expand in a particular direction as soon as a voltage is applied. These crystals are used to drive injection valves in combustion engines, for example. One of their advantages is their dynamic response. Due to their great stiffness, they respond with almost no lag. By contrast, a conventional hydraulic system needs to have a central pump compress the hydraulic fluid in all of the system's pipes before it can generate a mechanical motion.

The piezohydraulic actuator developed by Siemens' global research department Corporate Technology (CT) achieves a high level of stiffness because it only needs six milliliters of hydraulic fluid. The enclosed hydraulic system consists of three adjacent metallic bellows that can expand along an axis and are connected to one another by non-return valves. If the piezoelectric crystal is excited, it expands into the central chamber, where it creates pressure.

This pressure opens the valve to the adjacent chamber, which has an actuator stem attached to its front. The inflowing fluid slightly expands the bellows and the actuator stem is extended. Using a patented integration solution, the developers achieve a total rise of two centimeters:

They operate the piezoelectric crystal with a high-frequency sawtooth voltage and combine the rapid succession of small expansions to create a completely smooth motion of the actuator stem. The concept has two advantages:

If the reverse voltage waveform is applied, the pumping direction and the motion are reversed as well. In addition, the actuator maintains its extension once it has been set. By contrast, the actuators used in conventional gears to transmit power cannot withstand vibrations and other influences over the long-run.

The system is a further development of a piezohydraulic actuator that CT created for controlling the valves of large-scale combustion engines such as gas turbines. According to the developers, the new actuator might also be used for other applications such as in robots, in the operation of aircraft ailerons, and in medical and cleanroom technology.

Weitere Informationen:

http://www.siemens.com/innovationnews

Dr. Norbert Aschenbrenner | Siemens InnovationNews

More articles from Machine Engineering:

nachricht More functionalities: Microstructuring large surfaces with a UV-laser system
05.07.2018 | Fraunhofer-Institut für Lasertechnik ILT

nachricht A factory to go
04.07.2018 | Fraunhofer Institute for Manufacturing Engineering and Automation IPA

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

The Maturation Pattern of the Hippocampus Drives Human Memory Deve

23.07.2018 | Science Education

FAU researchers identify Parkinson's disease as a possible autoimmune disease

23.07.2018 | Health and Medicine

O2 stable hydrogenases for applications

23.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>